PRIMITIVITY AND HURWITZ PRIMITIVITY OF NONNEGATIVE MATRIX TUPLES: A UNIFIED APPROACH

被引:1
|
作者
Wu, Yaokun [1 ,2 ]
Zhu, Yinfeng [1 ,3 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, MOE LSC, Shanghai 200240, Peoples R China
[3] Imperial Coll London, Dept Math, 180 Queens Gate, London SW7 2AZ, England
基金
中国国家自然科学基金;
关键词
automaton; vCern; 'y function; ergodic exponent; Hamiltonian walk; primitive expo-nent; stable relation; AUTOMATA; SETS; COVERINGS; GRAPHS; WORDS;
D O I
10.1137/22M1471535
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For an m-tuple of nonnegative n\times n matrices (A1,...,Am), primitivity/Hurwitz primitivity means the existence of a positive product/Hurwitz product, respectively (all products are with repetitions permitted). The Hurwitz product with a Parikh vector a = (a1, . . . , am) \in Z\geqm0 is the sum of all products with ai multipliers Ai, i = 1, ... , m. Ergodicity/Hurwitz ergodicity means the existence of the corresponding product with a positive row. We give a unified proof for the Protasov-Vonyov characterization (2012) of primitive tuples of matrices without zero rows and columns and for the Protasov characterization (2013) of Hurwitz primitive tuples of matrices without zero rows. By establishing a connection with synchronizing automata, we, under the aforementioned conditions, find an O(n2m)-time algorithm to decide primitivity and an O(n3m2)-time algorithm to construct a Hurwitz primitive vector a of weight \summi=1 ai = O(n3). We also report results on ergodic and Hurwitz ergodic matrix tuples.
引用
收藏
页码:196 / 211
页数:16
相关论文
共 50 条
  • [1] ON THE PRIMITIVITY OF A NONNEGATIVE MATRIX WITH MANY ENTRIES
    LEWIN, M
    ARS COMBINATORIA, 1990, 29C : 41 - 47
  • [2] Primitivity and Local Primitivity of Digraphs and Nonnegative Matrices
    Fomichev V.M.
    Avezova Y.E.
    Koreneva A.M.
    Kyazhin S.N.
    Journal of Applied and Industrial Mathematics, 2018, 12 (3) : 453 - 469
  • [3] The characterization of operators preserving primitivity for matrix k-tuples
    Beasley, LeRoy B.
    Guterman, Alexander E.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (07) : 1762 - 1777
  • [4] The Primitivity and Primitive Exponents of a Class of Nonnegative Matrix Pairs
    Luo, Meijin
    PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON EDUCATION, MANAGEMENT, INFORMATION AND MECHANICAL ENGINEERING (EMIM 2017), 2017, 76 : 148 - 151
  • [5] ON PRIMITIVITY OF MATRIX RINGS
    GUPTA, RN
    AMERICAN MATHEMATICAL MONTHLY, 1968, 75 (06): : 636 - &
  • [6] Testing matrix groups for primitivity
    Holt, DF
    LeedhamGreen, CR
    OBrien, EA
    Rees, S
    JOURNAL OF ALGEBRA, 1996, 184 (03) : 795 - 817
  • [7] PRIMITIVITY, THE CONVERGENCE OF THE NQZ METHOD, AND THE LARGEST EIGENVALUE FOR NONNEGATIVE TENSORS
    Chang, Kung-Ching
    Pearson, Kelly J.
    Zhang, Tan
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2011, 32 (03) : 806 - 819
  • [8] Matrix near-rings and 0-primitivity
    W.-F. Ke
    J. H. Meyer
    Monatshefte für Mathematik, 2012, 165 : 353 - 363
  • [9] Matrix near-rings and 0-primitivity
    Ke, W. -F.
    Meyer, J. H.
    MONATSHEFTE FUR MATHEMATIK, 2012, 165 (3-4): : 353 - 363
  • [10] LEFT IDEALS AND 0-PRIMITIVITY IN MATRIX NEAR-RINGS
    MEYER, JH
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1992, 35 : 173 - 187