Electrochemically stable tunnel-type α-MnO2-based cathode materials for rechargeable aqueous zinc-ion batteries

被引:9
|
作者
De Luna, Yannis [1 ]
Alsulaiti, Asma [1 ]
Ahmad, Mohammad I. I. [2 ]
Nimir, Hassan [1 ]
Bensalah, Nasr [1 ]
机构
[1] Qatar Univ, Coll Arts & Sci, Dept Chem & Earth Sci, Doha, Qatar
[2] Qatar Univ, Cent Lab Unit, Res & Grad Studies Sect, Doha, Qatar
来源
FRONTIERS IN CHEMISTRY | 2023年 / 11卷
关键词
energy storage; aqueous rechargeable zinc-ion batteries; manganese oxide; hydrothermal method; electrochemical performance; HIGH-CAPACITY; STORAGE;
D O I
10.3389/fchem.2023.1101459
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The purpose of this study is the synthesis of alpha-MnO2-based cathode materials for rechargeable aqueous zinc ion batteries by hydrothermal method using KMnO4 and MnSO4 as starting materials. The aim is to improve the understanding of Zn2+ insertion/de-insertion mechanisms. The as-prepared solid compounds were characterized by spectroscopy and microscopy techniques. X-ray diffraction showed that the hydrothermal reaction forms alpha-MnO2 and Ce4+-inserted MnO2 structures. Raman spectroscopy confirmed the formation of alpha-MnO2 with hexagonal MnO2 and Ce-MnO2 structures. Scanning electron microscopy (SEM) confirmed the formation of nanostructured MnO2 (nanofibers) and Ce-MnO2 (nanorods). The electrochemical performance of MnO2 was evaluated using cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) tests in half-cells. CV results showed the reversible insertion/de-insertion of Zn2+ ions in MnO2 and Ce-MnO2. GCD cycling tests of MnO2 and Ce-MnO2 at 2500 mA/g demonstrated an impressive electrochemical performance, excellent cycling stability throughout 500 cycles, and high rate capability. The excellent electrochemical performance and the good cycling stability of MnO2 and Ce-MnO2 nanostructures by simple method makes them promising cathode materials for aqueous rechargeable zinc-ion batteries.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] A high surface area tunnel-type α-MnO2 nanorod cathode by a simple solvent-free synthesis for rechargeable aqueous zinc-ion batteries
    Alfaruqi, Muhammad Hilmy
    Islam, Saiful
    Gim, Jihyeon
    Song, Jinju
    Kim, Sungjin
    Duong Tung Pham
    Jo, Jeonggeun
    Xiu, Zhiliang
    Mathew, Vinod
    Kim, Jaekook
    CHEMICAL PHYSICS LETTERS, 2016, 650 : 64 - 68
  • [2] Manganese-based materials as cathode for rechargeable aqueous zinc-ion batteries
    Guo, Yixuan
    Zhang, Yixiang
    Lu, Hongbin
    BATTERY ENERGY, 2022, 1 (02):
  • [3] Recent advances in cathode materials of rechargeable aqueous zinc-ion batteries
    Wang, L.
    Zheng, J.
    MATERIALS TODAY ADVANCES, 2020, 7
  • [4] Tunnel-structure MnO2 nanospheres as high-capacity and reversible cathode materials for rechargeable aqueous zinc-ion batteries
    He, Tao
    Xiao, Li
    Li, Jing
    Zhu, Yirong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1015
  • [5] Recent Advances and Prospects of Cathode Materials for Rechargeable Aqueous Zinc-Ion Batteries
    Chen, Lineng
    An, Qinyou
    Mai, Liqiang
    ADVANCED MATERIALS INTERFACES, 2019, 6 (17)
  • [6] Two-Dimensional Cathode Materials for Aqueous Rechargeable Zinc-Ion Batteries†
    Wang, Yurou
    Yin, Jun
    Zhu, Jian
    CHINESE JOURNAL OF CHEMISTRY, 2022, 40 (08) : 973 - 988
  • [7] The progress of cathode materials in aqueous zinc-ion batteries
    Zhou, Xinchi
    Jiang, Shan
    Zhu, Siao
    Xiang, Shuangfei
    Zhang, Zhen
    Xu, Xiangyu
    Xu, Yuanyuan
    Zhou, Jian
    Tan, Suchong
    Pan, Zhengdao
    Rao, Xingyou
    Wu, Yutong
    Wang, Zhoulu
    Liu, Xiang
    Zhang, Yi
    Zhou, Yunlei
    NANOTECHNOLOGY REVIEWS, 2023, 12 (01)
  • [8] Ultrafast Rechargeable Aqueous Zinc-Ion Batteries Based on Stable Radical Chemistry
    Tang, Mengyao
    Zhu, Qiaonan
    Hu, Pengfei
    Jiang, Li
    Liu, Rongyang
    Wang, Jiawei
    Cheng, Liwei
    Zhang, Xiuhui
    Chen, Wenxing
    Wang, Hua
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (33)
  • [9] Highly stable Co-doped MnO2 nanoarrays as enhanced cathode materials for aqueous zinc-ion batteries
    Yao, Jia
    Ji, Jie
    Wan, Houzhao
    Duan, Jinxia
    Wang, Xunying
    Lv, Lin
    Ma, Guokun
    Tao, Li
    Wang, Hanbin
    Zhang, Jun
    Wang, Hao
    OXFORD OPEN ENERGY, 2022, 1
  • [10] Triquinoxalinediol as organic cathode material for rechargeable aqueous zinc-ion batteries
    Menart, Svit
    Pirnat, Klemen
    Pahovnik, David
    Dominko, Robert
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (20) : 10874 - 10882