On finite groups in which some particular maximal invariant subgroups have indices a prime-power

被引:0
|
作者
Shi, Jiangtao [1 ,2 ]
Liu, Wenjing [1 ]
机构
[1] Yantai Univ, Sch Math & Informat Sci, Yantai, Peoples R China
[2] Yantai Univ, Sch Math & Informat Sci, Yantai 264005, Peoples R China
关键词
Non-nilpotent maximal invariant subgroup; normalizer; prime-power index; nilpotent; solvable;
D O I
10.1080/00927872.2023.2241558
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose that A and G are finite groups such that A acts coprimely on G by automorphisms, we first prove that if every maximal A-invariant subgroup of G that contains the normalizer of some A-invariant Sylow subgroup has index a prime-power and the projective special linear group PSL2(7) is not a composition factor of G, then G is solvable. Moreover, we prove that if every non-nilpotent maximal A-invariant subgroup of G has index a prime-power and PSL2(7) is not a composition factor of G, then G is solvable.
引用
收藏
页码:423 / 426
页数:4
相关论文
共 50 条
  • [1] Finite Groups Whose Maximal Subgroups Are Solvable or Have Prime Power Indices
    Guo, W.
    Kondrat'ev, A. S.
    Maslova, N. V.
    Miao, L.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2020, 309 (SUPPL 1) : S47 - S51
  • [2] Finite groups whose maximal subgroups are solvable or have prime power indices
    Guo, W.
    Kondrat'ev, A. S.
    Maslova, N., V
    Miao, L.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2020, 26 (02): : 125 - 131
  • [3] Finite Groups Whose Maximal Subgroups Are Solvable or Have Prime Power Indices
    W. Guo
    A. S. Kondrat’ev
    N. V. Maslova
    L. Miao
    Proceedings of the Steklov Institute of Mathematics, 2020, 309 : S47 - S51
  • [4] Finite groups in which some particular invariant subgroups are TI-subgroups or subnormal subgroups
    Liu, Yifan
    Shi, Jiangtao
    GEORGIAN MATHEMATICAL JOURNAL, 2024, 31 (04) : 673 - 676
  • [5] Indices of Maximal Invariant Subgroups and Solvability of Finite Groups
    Changguo Shao
    Antonio Beltrán
    Mediterranean Journal of Mathematics, 2019, 16
  • [6] Indices of Maximal Invariant Subgroups and Solvability of Finite Groups
    Shao, Changguo
    Beltran, Antonio
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2019, 16 (03)
  • [7] On finite groups with some subgroups of prime indices
    V. S. Monakhov
    V. N. Tyutyanov
    Siberian Mathematical Journal, 2007, 48 : 666 - 668
  • [8] On finite groups with some subgroups of prime indices
    Monakhov, V. S.
    Tyutyanov, V. N.
    SIBERIAN MATHEMATICAL JOURNAL, 2007, 48 (04) : 666 - 668
  • [9] PRIME-POWER FACTOR GROUPS OF FINITE GROUPS
    GLAUBERM.G
    MATHEMATISCHE ZEITSCHRIFT, 1968, 107 (03) : 159 - &
  • [10] FINITE GROUPS IN WHICH SOME PARTICULAR SUBGROUPS ARE TI-SUBGROUPS
    Shi, Jiangtao
    Zhang, Cui
    MISKOLC MATHEMATICAL NOTES, 2013, 14 (03) : 1037 - 1040