Conformable Fractional-Order Modeling and Analysis of HIV/AIDS Transmission Dynamics

被引:2
|
作者
Salah, Esam Y. [1 ]
Sontakke, Bhausaheb [1 ]
Abdo, Mohammed S. [2 ,3 ]
Shatanawi, Wasfi [3 ,4 ,5 ]
Abodayeh, Kamaleldin [3 ]
Albalwi, M. Daher [6 ]
机构
[1] Dr Babasaheb Ambedkar Marathwada Univ, Pratishthan Coll, Dept Math, Aurangabad, India
[2] Hodeidah Univ, Dept Math, Al Hudaydah, Yemen
[3] Prince Sultan Univ, Dept Math & Sci, POB 66833, Riyadh 11586, Saudi Arabia
[4] China Med Univ Hosp, China Med Univ, Dept Med Res, Taichung 40402, Taiwan
[5] Hashemite Univ, Dept Math, Zarqa, Jordan
[6] Yanbu Ind Coll, Royal Commiss Jubail & Yanbu, POB 30436, Yanbu, Saudi Arabia
关键词
EPIDEMIC MODEL; STABILITY; SYSTEM;
D O I
10.1155/2024/1958622
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The mathematical model of the dynamics of HIV/AIDS infection transmission is developed by adding the set of infected but noninfectious persons, using a conformable fractional derivative in the Liouville-Caputo sense. Some fixed point theorems are applied to this model to investigate the existence and uniqueness of the solutions. It is determined what the system's fundamental reproduction number R0 is. The disease-free equilibrium displays the model's stability and the local stability around the equilibrium. The study also examined the effects of different biological features on the system through numerical simulations using the Adams-Moulton approach. Additionally, varied values of fractional orders are simulated numerically, demonstrating that the results generated by the conformable fractional derivative-based model are more physiologically plausible than integer-order derivatives.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Fractional-order modeling of Chikungunya virus transmission dynamics
    Chavada, Anil
    Pathak, Nimisha
    Khirsariya, Sagar R.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (01) : 1056 - 1080
  • [2] Some fractional-order modeling and analysis of the transmission dynamics together with prevention controls
    Guirao, Juan L. G.
    Jan, Rashid
    Baleanu, Dumitru
    Mohammed, Pshtiwan Othman
    Abdullah, Farah Aini
    Chorfi, Nejmeddine
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2024,
  • [3] Numerical analysis of a fractional-order chaotic system based on conformable fractional-order derivative
    He, Shaobo
    Sun, Kehui
    Mei, Xiaoyong
    Yan, Bo
    Xu, Siwei
    EUROPEAN PHYSICAL JOURNAL PLUS, 2017, 132 (01):
  • [4] Numerical analysis of a fractional-order chaotic system based on conformable fractional-order derivative
    Shaobo He
    Kehui Sun
    Xiaoyong Mei
    Bo Yan
    Siwei Xu
    The European Physical Journal Plus, 132
  • [5] Dengue Transmission Dynamics: A Fractional-Order Approach with Compartmental Modeling
    Meetei, Mutum Zico
    Zafar, Shahbaz
    Zaagan, Abdullah A.
    Mahnashi, Ali M.
    Idrees, Muhammad
    FRACTAL AND FRACTIONAL, 2024, 8 (04)
  • [6] On mathematical modeling of fractional-order stochastic for tuberculosis transmission dynamics
    Chukwu, C. W.
    Bonyah, E.
    Juga, M. L.
    Fatmawati
    RESULTS IN CONTROL AND OPTIMIZATION, 2023, 11
  • [7] HIV/AIDS epidemic fractional-order model
    Zafar, Zain Ul Abadin
    Rehan, Kashif
    Mushtaq, M.
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2017, 23 (07) : 1298 - 1315
  • [8] Stability analysis of conformable fractional-order nonlinear systems
    Souahi, Abdourazek
    Ben Makhlouf, Abdellatif
    Hammami, Mohamed Ali
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2017, 28 (06): : 1265 - 1274
  • [9] Multistability analysis of a conformable fractional-order chaotic system
    Ma, Chenguang
    Jun, Mou
    Cao, Yinghong
    Liu, Tianming
    Wang, Jieyang
    PHYSICA SCRIPTA, 2020, 95 (07)
  • [10] MONKEYPOX VIRAL TRANSMISSION DYNAMICS AND FRACTIONAL-ORDER MODELING WITH VACCINATION INTERVENTION
    Singh, Jaskirat pal
    Kumar, Sachin
    Baleanu, Dumitru
    Nisar, Kottakkaran sooppy
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (10)