Few-Shot Object Detection in Remote Sensing: Lifting the Curse of Incompletely Annotated Novel Objects

被引:10
|
作者
Zhang, Fahong [1 ]
Shi, Yilei [2 ]
Xiong, Zhitong [1 ]
Zhu, Xiao Xiang [1 ,3 ]
机构
[1] Tech Univ Munich, Chair Data Sci Earth Observat, D-80333 Munich, Germany
[2] Tech Univ Munich TUM, Sch Engn & Design, D-80333 Munich, Germany
[3] Munich Ctr Machine Learning, D-80333 Munich, Germany
关键词
Proposals; Object detection; Feature extraction; Remote sensing; Detectors; Training; Object recognition; Few-shot learning; object detection (OD); remote sensing image processing; self-training; IMAGES;
D O I
10.1109/TGRS.2023.3347329
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Object detection (OD) is an essential and fundamental task in computer vision (CV) and satellite image processing. Existing deep learning methods have achieved impressive performance thanks to the availability of large-scale annotated datasets. Yet, in real-world applications, the availability of labels is limited. In this article, few-shot OD (FSOD) has emerged as a promising direction, which aims at enabling the model to detect novel objects with only few of them annotated. However, many existing FSOD algorithms overlook a critical issue: when an input image contains multiple novel objects and only a subset of them are annotated, the unlabeled objects will be considered as background during training. This can cause confusions and severely impact the model's ability to recall novel objects. To address this issue, we propose a self-training-based FSOD (ST-FSOD) approach, which incorporates the self-training mechanism into the few-shot fine-tuning process. ST-FSOD aims to enable the discovery of novel objects that are not annotated and take them into account during training. On the one hand, we devise a two-branch region proposal networks (RPNs) to separate the proposal extraction of base and novel objects. On the another hand, we incorporate the student-teacher mechanism into RPN and the region-of-interest (RoI) head to include those highly confident yet unlabeled targets as pseudolabels. Experimental results demonstrate that our proposed method outperforms the state of the art in various FSOD settings by a large margin. The codes will be publicly available at: https://github.com/zhu-xlab/ST-FSOD.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
  • [1] Few-Shot Object Detection in Remote Sensing: Lifting the Curse of Incompletely Annotated Novel Objects
    Zhang, Fahong
    Shi, Yilei
    Xiong, Zhitong
    Zhu, Xiao Xiang
    IEEE Transactions on Geoscience and Remote Sensing, 2024, 62 : 1 - 14
  • [2] Few-Shot Object Detection on Remote Sensing Images
    Li, Xiang
    Deng, Jingyu
    Fang, Yi
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [3] Few Shot Object Detection with Incompletely Annotated Samples
    Qiao, Bo
    Zhou, Huajun
    Yang, Lingxiao
    Xie, Xiaohua
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [4] Generalized few-shot object detection in remote sensing images
    Zhang, Tianyang
    Zhang, Xiangrong
    Zhu, Peng
    Jia, Xiuping
    Tang, Xu
    Jiao, Licheng
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2023, 195 : 353 - 364
  • [5] InfRS: Incremental Few-Shot Object Detection in Remote Sensing Images
    Li, Wuzhou
    Zhou, Jiawei
    Li, Xiang
    Cao, Yi
    Jin, Guang
    Zhang, Xuemin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [6] Arbitrary Oriented Few-Shot Object Detection in Remote Sensing Images
    Wu, Wei
    Jiang, Chengeng
    Yang, Liao
    Wang, Weisheng
    Chen, Quanjun
    Zhang, Junjian
    Yang, Haiping
    Chen, Zuohui
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 17930 - 17944
  • [7] Few-Shot Object Detection of Remote Sensing Image via Calibration
    Li, Ruolei
    Zeng, Yilong
    Wu, Jianfeng
    Wang, Yongli
    Zhang, Xiaoli
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [8] Balancing Attention to Base and Novel Categories for Few-Shot Object Detection in Remote Sensing Imagery
    Zhu, Zining
    Wang, Peijin
    Diao, Wenhui
    Yang, Jinze
    Kong, Lingyu
    Wang, Hongqi
    Sun, Xian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
  • [9] Few-Shot Object Detection in Remote Sensing Image Interpretation: Opportunities and Challenges
    Liu, Sixu
    You, Yanan
    Su, Haozheng
    Meng, Gang
    Yang, Wei
    Liu, Fang
    REMOTE SENSING, 2022, 14 (18)
  • [10] Context Information Refinement for Few-Shot Object Detection in Remote Sensing Images
    Wang, Yan
    Xu, Chaofei
    Liu, Cuiwei
    Li, Zhaokui
    REMOTE SENSING, 2022, 14 (14)