Multiview Robust Graph-Based Clustering for Cancer Subtype Identification

被引:7
|
作者
Shi, Xiaofeng [1 ]
Liang, Cheng [1 ]
Wang, Hong [1 ]
机构
[1] Shandong Normal Univ, Sch Informat Sci & Engn, Jinan 250358, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Cancer subtyping identification; robust representation learning; graph-based clustering; multi-view learning; multi-omics data; LATENT VARIABLE MODEL; BREAST; JOINT;
D O I
10.1109/TCBB.2022.3143897
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Cancer subtype identification is to classify cancer into groups according to their molecular characteristics and clinical manifestations and is the basis for more personalized diagnosis and therapy. Public datasets such as The Cancer Genome Atlas (TCGA) have collected a massive number of multi-omics data. The accumulation of these datasets provides unprecedented opportunities to study the mechanism of cancers and further identify cancer subtypes at a comprehensive level. In this paper, we propose a multi-view robust graph-based clustering (MRGC) method to effectively identify cancer subtypes. Our method first learns robust latent representations from the raw omics data to alleviate the influences of the noise, where a set of similarity matrices are then adaptively learned based on these new representations. Finally, a global similarity graph is obtained by exploiting the consensus structure from the graphs. As a result, the three parts in our method can reinforce each other in a mutual iterative manner. We conduct extensive experiments on both generic machine learning datasets and cancer datasets. The experimental results confirm that our model can achieve satisfactory clustering performance compared to several state-of-the-art approaches. Moreover, we convey the practicability of MRGC by carrying out a case study on hepatocellular carcinoma.
引用
收藏
页码:544 / 556
页数:13
相关论文
共 50 条
  • [1] Anchor graph-based multiview spectral clustering
    Lei, Yu
    Niu, Zuoyuan
    Wang, Qianqian
    Gao, Quanxue
    Yang, Ming
    NEUROCOMPUTING, 2024, 583
  • [2] Accurate Complementarity Learning for Graph-Based Multiview Clustering
    Xiao, Xiaolin
    Gong, Yue-Jiao
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (11) : 16106 - 16118
  • [3] Accurate Complementarity Learning for Graph-Based Multiview Clustering
    Xiao, Xiaolin
    Gong, Yue-Jiao
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (11) : 16106 - 16118
  • [4] An Balanced, and Scalable Graph-Based Multiview Clustering Method
    Zhao, Zihua
    Nie, Feiping
    Wang, Rong
    Wang, Zheng
    Li, Xuelong
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (12) : 7643 - 7656
  • [5] Robust Rank-Constrained Sparse Learning: A Graph-Based Framework for Single View and Multiview Clustering
    Wang, Qi
    Liu, Ran
    Chen, Mulin
    Li, Xuelong
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (10) : 10228 - 10239
  • [6] Graph-based unsupervised feature selection and multiview clustering for microarray data
    Swarnkar, Tripti
    Mitra, Pabitra
    JOURNAL OF BIOSCIENCES, 2015, 40 (04) : 755 - 767
  • [7] Graph-based unsupervised feature selection and multiview clustering for microarray data
    Tripti Swarnkar
    Pabitra Mitra
    Journal of Biosciences, 2015, 40 : 755 - 767
  • [8] Robust Graph-Based Multi-View Clustering
    Liang, Weixuan
    Liu, Xinwang
    Zhou, Sihang
    Liu, Jiyuan
    Wang, Siwei
    Zhu, En
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 7462 - 7469
  • [9] Parameter-Free Consensus Embedding Learning for Multiview Graph-Based Clustering
    Wu, Danyang
    Nie, Feiping
    Dong, Xia
    Wang, Rong
    Li, Xuelong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (12) : 7944 - 7950
  • [10] Cancer Subtype Recognition Based on Laplacian Rank Constrained Multiview Clustering
    Ge, Shuguang
    Wang, Xuesong
    Cheng, Yuhu
    Liu, Jian
    GENES, 2021, 12 (04)