Gradient Estimates for a Weighted Γ-nonlinear Parabolic Equation Coupled with a Super Perelman-Ricci Flow and Implications

被引:8
|
作者
Taheri, Ali [1 ]
机构
[1] Univ Sussex, Sch Math & Phys Sci, Brighton, E Sussex, England
关键词
Weighted Riemannian manifold; Gradient estimates; Super Perelman-Ricci flow; Bakry-emery tensor; Harnack inequality; Liouville theorem; HARNACK INEQUALITY; WITTEN LAPLACIAN; HEAT-EQUATION; W-ENTROPY; KERNEL; THEOREM;
D O I
10.1007/s11118-021-09969-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article studies a nonlinear parabolic equation on a complete weighted manifold where the metric and potential evolve under a super Perelman-Ricci flow. It derives elliptic gradient estimates of local and global types for the positive solutions and exploits some of their implications notably to a general Liouville type theorem, parabolic Harnack inequalities and classes of Hamilton type dimension-free gradient estimates. Some examples and special cases are discussed for illustration.
引用
收藏
页码:311 / 335
页数:25
相关论文
共 50 条