Characterization of Lipschitz Functions via Commutators of Multilinear Singular Integral Operators in Variable Lebesgue Spaces

被引:3
|
作者
Wu, Jiang Long [1 ]
Zhang, Pu [1 ]
机构
[1] Mudanjiang Normal Univ, Dept Math, Mudanjiang 157011, Peoples R China
基金
中国国家自然科学基金;
关键词
Multilinear commutator; singular integral operator; Lipschitz function; variable exponent; WEIGHTED NORM INEQUALITIES; CALDERON-ZYGMUND OPERATORS; BOUNDED MEAN-OSCILLATION; MAXIMAL OPERATOR; HARDY-SPACES;
D O I
10.1007/s10114-023-2164-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (b) over right arrow = (b(1), b(2),..., b(m)) be a collection of locally integrable functions and T-Sigma(b) over right arrow the commutator of multilinear singular integral operator T. Denote by L(delta) and L(delta(center dot)) the Lipschitz spaces and the variable Lipschitz spaces, respectively. The main purpose of this paper is to establish some new characterizations of the (variable) Lipschitz spaces in terms of the boundedness of multilinear commutator T-Sigma(b) over right arrow in the context of the variable exponent Lebesgue spaces, that is, the authors give the necessary and sufficient conditions for b(j) (j = 1, 2,..., m) to be L(delta) or L(delta(center dot)) via the boundedness of multilinear commutator from products of variable exponent Lebesgue spaces to variable exponent Lebesgue spaces. The authors do so by applying the Fourier series technique and some pointwise estimate for the commutators. The key tool in obtaining such pointwise estimate is a certain generalization of the classical sharp maximal operator.
引用
收藏
页码:2465 / 2488
页数:24
相关论文
共 50 条