AMS Intrusion Detection Method Based on Improved Generalized Regression Neural Network

被引:1
|
作者
Wu, Yuhong [1 ]
Hu, Xiangdong [2 ]
机构
[1] Chongqing Univ Posts & Telecommun, Coll Comp Sci & Technol, Chongqing, Peoples R China
[2] Chongqing Univ Posts & Telecommun, Coll Automat, Chongqing, Peoples R China
来源
JOURNAL OF INTERNET TECHNOLOGY | 2023年 / 24卷 / 02期
关键词
Deep belief network; Intrusion detection; Extreme learning machine; Generalized regression neural network;
D O I
10.53106/160792642023032402029
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The smart grid integrates the computer network with the traditional power system and realizes the intelligentization of the power grid. The Advanced Measurement System (AMS) interconnects the power system with the user, realizes the two-way interaction of data and information between the power supplier and the user, and promotes the development of the smart grid. Therefore, the safe operation of AMS is the key to the development of the smart grid. As smart grids and computer networks become more and more closely connected, the number of cyberattacks on AMS continues to increase. Currently, AMS intrusion detection algorithms based on machine learning are constantly being proposed. Machine learning algorithms have better learning and classification capabilities for small sample data, but when faced with a large amount of high-dimensional data information, the learning ability of machine learning algorithms is reduced, and the generalization ability is reduced. To enhance the AMS intrusion detection algorithm, this paper uses a Generalized Regression Neural Network (GRNN) to identify attack behaviors. GRNN has strong non-linear mapping ability, is suitable for unstable data processing with small data characteristics, has good classification and prediction ability, and has been widely used in power grid systems. Aiming at the existing problems, this paper proposes an upgraded generalized regression neural network AMS intrusion detection method DBN-DOA-GRNN. Based on the feature extraction and dimensionality reduction of the data by DBN, GRNN is used for data with less feature information in learning classification. In addition, to improve the detection effect of the method, the Drosophila Optimization Algorithm (DOA) is used to optimize the parameters of GRNN to reduce the influence of random parameters on the detection results, improve the detection accuracy of this method on small-scale sample data, and thereby improve the detection performance of the AMS intrusion detection algorithm. The proposed method archives an accuracy of 87.61%, 3.10% false alarm rate, and 96.9 precision rate.
引用
收藏
页码:539 / 548
页数:10
相关论文
共 50 条
  • [1] Intrusion Detection Method Based on Improved Neural Network
    Tang Hai-he
    2018 INTERNATIONAL CONFERENCE ON SMART GRID AND ELECTRICAL AUTOMATION (ICSGEA), 2018, : 151 - 154
  • [2] Network Intrusion Detection Method Based on Improved Simulated Annealing Neural Network
    Gao, Meijuan
    Tian, Jingwen
    2009 INTERNATIONAL CONFERENCE ON MEASURING TECHNOLOGY AND MECHATRONICS AUTOMATION, VOL III, 2009, : 261 - 264
  • [3] Intrusion Detection Method based on Improved BP Neural Network Research
    Zhu YuanZhong
    INTERNATIONAL JOURNAL OF SECURITY AND ITS APPLICATIONS, 2016, 10 (05): : 193 - 202
  • [4] Application of Generalized Regression Neural Network in Cloud Security Intrusion Detection
    Gao, Feng
    2017 INTERNATIONAL CONFERENCE ON ROBOTS & INTELLIGENT SYSTEM (ICRIS), 2017, : 54 - 57
  • [5] An Improved Network Intrusion Detection Based on Deep Neural Network
    Zhang, Lin
    Li, Meng
    Wang, Xiaoming
    Huang, Yan
    2019 INTERNATIONAL CONFERENCE ON ADVANCED ELECTRONIC MATERIALS, COMPUTERS AND MATERIALS ENGINEERING (AEMCME 2019), 2019, 563
  • [6] Network Intrusion Detection Based on a General Regression Neural Network Optimized by an Improved Artificial Immune Algorithm
    Wu, Jianfa
    Peng, Dahao
    Li, Zhuping
    Zhao, Li
    Ling, Huanzhang
    PLOS ONE, 2015, 10 (03):
  • [7] An Improved Intrusion Detection System Based on Neural Network
    Han, Xiao
    2009 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND INTELLIGENT SYSTEMS, PROCEEDINGS, VOL 1, 2009, : 887 - 890
  • [8] Network intrusion detection models based on improved dynamic neural network
    Zhang, Guiling
    Sun, Jizhou
    Jisuanji Gongcheng/Computer Engineering, 2006, 32 (11): : 10 - 12
  • [9] Wireless Network Intrusion Detection Based on Improved Convolutional Neural Network
    Yang, Hongyu
    Wang, Fengyan
    IEEE ACCESS, 2019, 7 : 64366 - 64374
  • [10] Research on Intrusion Detection Method Based On Neural Network
    Xu Chi
    Chen Jin
    MEMS, NANO AND SMART SYSTEMS, PTS 1-6, 2012, 403-408 : 1479 - +