Towards a general-purpose foundation model for computational pathology

被引:119
|
作者
Chen, Richard J. [1 ,2 ,3 ,4 ,5 ]
Ding, Tong [1 ,6 ]
Lu, Ming Y. [1 ,2 ,3 ,4 ,7 ]
Williamson, Drew F. K. [1 ,2 ,3 ]
Jaume, Guillaume [1 ,2 ,3 ,4 ]
Song, Andrew H. [1 ,2 ,3 ,4 ]
Chen, Bowen [1 ,2 ]
Zhang, Andrew [1 ,2 ,3 ,4 ,8 ]
Shao, Daniel [1 ,2 ,3 ,4 ,8 ]
Shaban, Muhammad [1 ,2 ,3 ,4 ]
Williams, Mane [1 ,2 ,3 ,4 ,5 ]
Oldenburg, Lukas [1 ]
Weishaupt, Luca L. [1 ,2 ,3 ,4 ,8 ]
Wang, Judy J. [1 ]
Vaidya, Anurag [1 ,2 ,3 ,4 ,8 ]
Le, Long Phi [2 ,8 ]
Gerber, Georg [1 ]
Sahai, Sharifa [1 ,2 ,3 ,4 ,9 ]
Williams, Walt [1 ,6 ]
Mahmood, Faisal [1 ,2 ,3 ,4 ,10 ]
机构
[1] Harvard Med Sch, Brigham & Womens Hosp, Dept Pathol, Boston, MA 02115 USA
[2] Harvard Med Sch, Massachusetts Gen Hosp, Dept Pathol, Boston, MA 02115 USA
[3] Broad Inst Harvard & MIT, Canc Program, Cambridge, MA 02142 USA
[4] Dana Farber Canc Inst, Canc Data Sci Program, Boston, MA 02215 USA
[5] Harvard Med Sch, Dept Biomed Informat, Boston, MA USA
[6] Harvard Univ, Harvard John A Paulson Sch Engn & Appl Sci, Cambridge, MA USA
[7] Massachusetts Inst Technol MIT, Elect Engn & Comp Sci, Cambridge, MA USA
[8] Harvard MIT, Hlth Sci & Technol, Cambridge, MA USA
[9] Harvard Univ, Dept Syst Biol, Cambridge, MA USA
[10] Harvard Univ, Harvard Data Sci Initiat, Cambridge, MA 02138 USA
基金
美国国家卫生研究院;
关键词
SOMATIC GENOMIC LANDSCAPE; ARTIFICIAL-INTELLIGENCE; CANCER; ADENOCARCINOMAS; BIOPSIES; FEATURES; SYSTEM;
D O I
10.1038/s41591-024-02857-3
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Quantitative evaluation of tissue images is crucial for computational pathology (CPath) tasks, requiring the objective characterization of histopathological entities from whole-slide images (WSIs). The high resolution of WSIs and the variability of morphological features present significant challenges, complicating the large-scale annotation of data for high-performance applications. To address this challenge, current efforts have proposed the use of pretrained image encoders through transfer learning from natural image datasets or self-supervised learning on publicly available histopathology datasets, but have not been extensively developed and evaluated across diverse tissue types at scale. We introduce UNI, a general-purpose self-supervised model for pathology, pretrained using more than 100 million images from over 100,000 diagnostic H&E-stained WSIs (>77 TB of data) across 20 major tissue types. The model was evaluated on 34 representative CPath tasks of varying diagnostic difficulty. In addition to outperforming previous state-of-the-art models, we demonstrate new modeling capabilities in CPath such as resolution-agnostic tissue classification, slide classification using few-shot class prototypes, and disease subtyping generalization in classifying up to 108 cancer types in the OncoTree classification system. UNI advances unsupervised representation learning at scale in CPath in terms of both pretraining data and downstream evaluation, enabling data-efficient artificial intelligence models that can generalize and transfer to a wide range of diagnostically challenging tasks and clinical workflows in anatomic pathology.
引用
收藏
页码:850 / 862
页数:13
相关论文
共 50 条
  • [1] A general-purpose computational model of the conscious mind
    Samsonovich, A
    DeJong, K
    PROCEEDINGS OF THE SIXTH INTERNATIONAL CONFERENCE ON COGNITIVE MODELING, 2004, : 382 - 383
  • [2] GENERAL-PURPOSE COMPOSITIONAL MODEL
    ACS, G
    DOLESCHALL, S
    FARKAS, E
    SOCIETY OF PETROLEUM ENGINEERS JOURNAL, 1985, 25 (04): : 543 - 553
  • [3] Why Foundations? The Theory and Strategy of the General-Purpose Foundation
    Gill, Samsher Singh
    FOUNDATION REVIEW, 2023, 15 (04): : 79 - 101
  • [4] A logic foundation for a general-purpose history querying tool
    Stevens, Reinout
    De Roover, Coen
    Noguera, Carlos
    Kellens, Andy
    Jonckers, Viviane
    SCIENCE OF COMPUTER PROGRAMMING, 2014, 96 : 107 - 120
  • [5] Synthetic Sensors: Towards General-Purpose Sensing
    Laput, Gierad
    Zhang, Yang
    Harrison, Chris
    PROCEEDINGS OF THE 2017 ACM SIGCHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI'17), 2017, : 3986 - 3999
  • [6] Towards General-Purpose Neural Network Computing
    Eldridge, Schuyler
    Appavoo, Jonathan
    Joshi, Ajay
    Waterland, Amos
    Seltzer, Margo
    2015 INTERNATIONAL CONFERENCE ON PARALLEL ARCHITECTURE AND COMPILATION (PACT), 2015, : 99 - 112
  • [7] A GENERAL-PURPOSE THERMAL-MODEL
    RUBIN, B
    BUCHANAN, WL
    SOCIETY OF PETROLEUM ENGINEERS JOURNAL, 1985, 25 (02): : 202 - 214
  • [8] Multimodal Foundation Models: From Specialists to General-Purpose Assistants
    Li, Chunyuan
    Gan, Zhe
    Yang, Zhengyuan
    Yang, Jianwei
    Li, Linjie
    Wang, Lijuan
    Gao, Jianfeng
    FOUNDATIONS AND TRENDS IN COMPUTER GRAPHICS AND VISION, 2024, 16 (1-2): : 1 - 214
  • [9] Towards general-purpose representation learning of polygonal geometries
    Gengchen Mai
    Chiyu Jiang
    Weiwei Sun
    Rui Zhu
    Yao Xuan
    Ling Cai
    Krzysztof Janowicz
    Stefano Ermon
    Ni Lao
    GeoInformatica, 2023, 27 : 289 - 340
  • [10] Towards Free Data Selection with General-Purpose Models
    Xie, Yichen
    Ding, Mingyu
    Tomizuka, Masayoshi
    Zhan, Wei
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,