STANLEY DEPTH OF POWERS OF THE PATH IDEAL

被引:0
|
作者
Stefan, Alin [1 ]
机构
[1] Petr & Gas Univ Ploiesti, Dept Comp Sci Informat Technol Math & Phys, B Dul Bucuresti 39, Ploiesti 100680, Romania
关键词
Characteristic poset; Monomial Ideal; Stanley depth; Stanley decomposition; EDGE IDEAL; CONJECTURE; COMPUTE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to give a formula for the Stanley depth of quotients of powers of the path ideal. As a consequence, we establish that the behavior of the Stanley depth of the quotients of powers of the path ideal is the same as a classical result of Brodmann on depth.
引用
收藏
页码:69 / 76
页数:8
相关论文
共 50 条
  • [1] STANLEY DEPTH OF POWERS OF THE PATH IDEAL
    Ştefan, Alin
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2023, 85 (02): : 69 - 76
  • [2] DEPTH AND STANLEY DEPTH OF POWERS OF THE PATH IDEAL OF A PATH GRAPH
    Balanescu, Silviu
    Cimpoea, Mircea
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2024, 86 (04): : 65 - 76
  • [3] DEPTH AND STANLEY DEPTH OF POWERS OF THE PATH IDEAL OF A PATH GRAPH
    Bălănescu, Silviu
    Cimpoeaş, Mircea
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2024, 86 (04): : 65 - 76
  • [4] STANLEY DEPTH OF POWERS OF THE EDGE IDEAL OF A FOREST
    Pournaki, M. R.
    Fakhari, S. A. Seyed
    Yassemi, S.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (10) : 3327 - 3336
  • [5] STANLEY DEPTH OF THE PATH IDEAL ASSOCIATED TO A LINE GRAPH
    Cimpoeas, Mircea
    MATHEMATICAL REPORTS, 2017, 19 (02): : 157 - 164
  • [6] Depth and Stanley depth of the path ideal associated to an n-cyclic graph
    Zhu, Guangjun
    TURKISH JOURNAL OF MATHEMATICS, 2017, 41 (05) : 1174 - 1183
  • [7] The depth of powers of an ideal
    Herzog, J
    Hibi, T
    JOURNAL OF ALGEBRA, 2005, 291 (02) : 534 - 550
  • [8] On the Stanley depth of powers of edge ideals
    Fakhari, S. A. Seyed
    JOURNAL OF ALGEBRA, 2017, 489 : 463 - 474
  • [9] On the Stanley Depth of Powers of Monomial Ideals
    Fakhari, S. A. Seyed
    MATHEMATICS, 2019, 7 (07)
  • [10] STANLEY DEPTH AND SIZE OF A MONOMIAL IDEAL
    Herzog, Juergen
    Popescu, Dorin
    Vladoiu, Marius
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (02) : 493 - 504