Cardiac arrhythmia classification by time-frequency features inputted to the designed convolutional neural networks

被引:12
|
作者
Zhang, Yi [1 ]
Yi, Jizheng [1 ]
Chen, Aibin [1 ]
Cheng, Le [1 ]
机构
[1] Cent South Univ Forestry & Technol, Coll Comp & Informat Engn, Changsha 410004, Peoples R China
关键词
Electrocardiogram (ECG); Cardiac arrhythmia classification; Convolutional neural network (CNN); Mel-frequency cepstral coefficients (MFCC);
D O I
10.1016/j.bspc.2022.104224
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The electrocardiogram (ECG) plays a vital auxiliary role in medical diagnosis, but due to the very low amplitude of the ECG signals, it is challenging and time-consuming to conduct artificial visual evaluation of the ECG signals. In recent years, medical aid research methods through ECG have emerged one after another. However, most of them have defects such as poor model generalization ability and obvious individual differences. This paper constructs two-way multiplex convolutional neural networks (CNNs) based on time-frequency features to classify normal cardiac rhythm (NOR) and seven cardiac arrhythmias including atrial premature contraction (APC), ventricular premature beat (PVC), left bundle branch block (LBBB), right bundle branch block (RBBB), signal quality change (similar to), ventricular fused heart beat (FVN), and pacing heart beat (/). Firstly, the preprocessing steps of the original rough ECG signal are arranged in a unique order, including wavelet transform, threshold denoising, normalization, chopping, mel-frequency cepstral coefficients (MFCC). Secondly, a 12-layer one-dimensional CNN model with block representation and a 11-layer auxiliary-two-dimensional CNN architecture are designed for the time-domain feature and the frequency-domain feature, respectively, where the focal loss function is defined to solve the problem of data categories imbalance. Finally, the experimental results show that the proposed algorithm presents excellent performances in processing variable length ECGs, the average accuracy of time-domain model is 99.1 %, and the classification accuracy of APC in frequency-domain model is 96.3 %.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Research on Arrhythmia Classification by Using Convolutional Neural Network with Mixed Time-Frequency Domain Features
    Lü H.
    Jiang M.-F.
    Li Y.
    Zhang J.-C.
    Wang Z.-K.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2023, 51 (03): : 701 - 711
  • [2] Convolutional Neural Networks for Chipless RFID Classification in the Time-Frequency Domain
    Fodop Sokoudjou, J. Junior
    Garcia-Cardarelli, Pablo
    Rezola Garciandia, Ainhoa
    Diaz, Javier
    Ochoa, Idoia
    2024 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION AND INC/USNCURSI RADIO SCIENCE MEETING, AP-S/INC-USNC-URSI 2024, 2024, : 1245 - 1246
  • [3] Cardiac Arrhythmia Classification Using Neural Networks with Selected Features
    Mitra, Malay
    Samanta, R. K.
    FIRST INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE: MODELING TECHNIQUES AND APPLICATIONS (CIMTA) 2013, 2013, 10 : 76 - 84
  • [4] Multiple Classification of Gait Using Time-Frequency Representations and Deep Convolutional Neural Networks
    Jung, Dawoon
    Nguyen, Mau Dung
    Park, Mina
    Kim, Jinwook
    Mun, Kyung-Ryoul
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2020, 28 (04) : 997 - 1005
  • [5] Robust Sound Event Classification with Local Time-Frequency Information and Convolutional Neural Networks
    Yao, Yanli
    Yu, Qiang
    Wang, Longbiao
    Dang, Jianwu
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2019: TEXT AND TIME SERIES, PT IV, 2019, 11730 : 351 - 361
  • [6] Automatic Modulation Classification using Graph Convolutional Neural Networks for Time-frequency Representation
    Tonchev, Krasimir
    Neshov, Nikolay
    Ivanov, Antoni
    Manolova, Agata
    Poulkov, Vladimir
    2022 25TH INTERNATIONAL SYMPOSIUM ON WIRELESS PERSONAL MULTIMEDIA COMMUNICATIONS (WPMC), 2022,
  • [7] Explainable time-frequency convolutional neural network for microseismic waveform classification
    Bi, Xin
    Zhang, Chao
    He, Yao
    Zhao, Xiangguo
    Sun, Yongjiao
    Ma, Yuliang
    INFORMATION SCIENCES, 2021, 546 : 883 - 896
  • [8] Convolutional neural network based emotion classification using electrodermal activity signals and time-frequency features
    Ganapathy, Nagarajan
    Veeranki, Yedukondala Rao
    Swaminathan, Ramakrishnan
    EXPERT SYSTEMS WITH APPLICATIONS, 2020, 159
  • [9] Cardiac Arrhythmia Classification Using Convolutional Neural Network
    Gamgami, Oumaima
    Korikache, Reda
    Chaieb, Amine
    ADVANCES IN SMART MEDICAL, IOT & ARTIFICIAL INTELLIGENCE, VOL 1, ICSMAI 2024, 2024, 11 : 297 - 308
  • [10] Fault classification using convolutional neural networks and color channels for time-frequency analysis of acoustic emissions
    Nashed, Mohamad S.
    Renno, Jamil
    Mohamed, M. Shadi
    JOURNAL OF VIBRATION AND CONTROL, 2024, 30 (9-10) : 2283 - 2300