Evaluating generation of chaotic time series by convolutional generative adversarial networks

被引:0
|
作者
Tanaka, Yuki [1 ]
Yamaguti, Yutaka [2 ]
机构
[1] Fukuoka Inst Technol, Grad Sch Engn, Wajiro 3 30 1,Higashi ku, Fukuoka 8110295, Japan
[2] Fukuoka Inst Technol, Fac Informat Engn, Wajiro 3 30 1,Higashi ku, Fukuoka 8110295, Japan
关键词
chaos; generative adversarial network; convolutional network; nonlinear time; series analysis; NONLINEARITY;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
To understand the ability and limitations of convolutional neural networks to generate time series that mimic complex temporal signals, we trained a generative adversarial network consisting of convolutional networks to generate chaotic time series and used nonlinear time series analysis to evaluate the generated time series. A numerical measure of determinism and the Lyapunov exponent showed that the generated time series well reproduce the chaotic properties of the original time series. However, error distribution analyses showed that large errors appeared at a low but non-negligible rate. Such errors would not be expected if the distribution were assumed to be exponential.
引用
收藏
页码:117 / 120
页数:4
相关论文
共 50 条
  • [1] RECURRENT GENERATIVE ADVERSARIAL NETWORKS FOR GLUCOSE TIME SERIES GENERATION
    Zhu, T.
    Li, K.
    Herrero, P.
    Georgiou, P.
    DIABETES TECHNOLOGY & THERAPEUTICS, 2022, 24 : A229 - A229
  • [2] Generative adversarial network based on chaotic time series
    Makoto Naruse
    Takashi Matsubara
    Nicolas Chauvet
    Kazutaka Kanno
    Tianyu Yang
    Atsushi Uchida
    Scientific Reports, 9
  • [3] Generative adversarial network based on chaotic time series
    Naruse, Makoto
    Matsubara, Takashi
    Chauvet, Nicolas
    Kanno, Kazutaka
    Yang, Tianyu
    Uchida, Atsushi
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [4] Time-series Generative Adversarial Networks
    Yoon, Jinsung
    Jarrett, Daniel
    van der Schaar, Mihaela
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [5] Data-driven modeling of noise time series with convolutional generative adversarial networks *
    Wunderlich, Adam
    Sklar, Jack
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2023, 4 (03):
  • [6] Medical Time-Series Data Generation Using Generative Adversarial Networks
    Dash, Saloni
    Yale, Andrew
    Guyon, Isabelle
    Bennett, Kristin P.
    ARTIFICIAL INTELLIGENCE IN MEDICINE (AIME 2020), 2020, : 382 - 391
  • [7] Deep convolutional generative adversarial networks for traffic data imputation encoding time series as images
    Huang, Tongge
    Chakraborty, Pranamesh
    Sharma, Anuj
    INTERNATIONAL JOURNAL OF TRANSPORTATION SCIENCE AND TECHNOLOGY, 2023, 12 (01) : 1 - 18
  • [8] Multivariate Time Series Imputation with Generative Adversarial Networks
    Luo, Yonghong
    Cai, Xiangrui
    Zhang, Ying
    Xu, Jun
    Yuan, Xiaojie
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [9] Fully embedded time series generative adversarial networks
    Beck J.
    Chakraborty S.
    Neural Computing and Applications, 2024, 36 (24) : 14885 - 14894
  • [10] Evaluation of Generative Adversarial Networks for Time Series Data
    Arnout, Hiba
    Bronner, Johanna
    Runkler, Thomas
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,