On the lower bound for Laplacian resolvent energy through majorization

被引:0
|
作者
Altindag, S. B. Bozkurt [1 ]
Milovanovic, I. [2 ]
Milovanovic, E. [2 ]
机构
[1] Selcuk Univ, Fac Sci, Dept Math, Konya, Turkiye
[2] Univ Nis, Fac Elect Engn, Nish, Serbia
关键词
Graph; Laplacian eigenvalues; Laplacian resolvent energy; 1ST ZAGREB INDEX; INVERSE DEGREE; COINDEX; INEQUALITIES;
D O I
10.1142/S179383092450023X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a simple connected graph G of order n with Laplacian eigenvalues mu(1 )>= mu(2 )>= & ctdot; >= mu(n-1 )> mu(n )= 0, the Laplacian resolvent energy of G is defined as RL(G) = & sum;(n)(i=1 )1/n+1-mu(i). In this paper, we provide an improved lower bound for RL(G) through majorization. Considering our lower bound, we also derive some lower bounds for RL(G) when the graph G possesses tree structure.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Lower Bounds for the Laplacian Resolvent Energy via Majorization
    Palacios, Jose Luis
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2018, 79 (02) : 367 - 370
  • [2] ON LAPLACIAN RESOLVENT ENERGY OF GRAPHS
    Bhatnagar, Sandeep
    Merajuddin, Siddiqui
    Pirzada, Shariefuddin
    TRANSACTIONS ON COMBINATORICS, 2023, 12 (04) : 217 - 225
  • [3] The Laplacian energy of threshold graphs and majorization
    Dahl, Geir
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 469 : 518 - 530
  • [4] A note on the Laplacian resolvent energy of graphs
    Matejic, M.
    Zogic, E.
    Milovanovic, E.
    Milovanovic, I.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2020, 13 (06)
  • [5] ON NORMALIZED SIGNLESS LAPLACIAN RESOLVENT ENERGY
    Altindag, S. B. Bozkurt
    Milovanovic, I.
    Milovanovic, E.
    Matejic, M.
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2024, 48 (05): : 673 - 687
  • [6] Lower bound on the resolvent for trapped situations
    Bony, Jean-Francois
    Burq, Nicolas
    Ramond, Thierry
    COMPTES RENDUS MATHEMATIQUE, 2010, 348 (23-24) : 1279 - 1282
  • [7] Lower Bounds for the Resolvent Energy
    Bianchi, Monica
    Cornaro, Alessandra
    Palacios, Jose Luis
    Torriero, Anna
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2018, 80 (02) : 459 - 465
  • [8] A note on the Laplacian resolvent energy, Kirchhoff index and their relations
    Zogic, Emir
    Glogic, Edin
    DISCRETE MATHEMATICS LETTERS, 2019, 2 : 32 - 37
  • [9] A lower bound for sums of eigenvalues of the Laplacian
    Melas, AD
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (02) : 631 - 636
  • [10] On a Lower Bound for the Laplacian Eigenvalues of a Graph
    Greaves, Gary R. W.
    Munemasa, Akihiro
    Peng, Anni
    GRAPHS AND COMBINATORICS, 2017, 33 (06) : 1509 - 1519