Ruled like surfaces in three dimensional Euclidean space

被引:0
|
作者
Pal, Buddhadev [1 ]
Kumar, Santosh [1 ]
机构
[1] Banaras Hindu Univ, Inst Sci, Dept Math, Varanasi 221005, India
来源
关键词
Bertrand curve; Frenet frame; rectifying plane; osculating plane; normal plane; ruled surfaces; CURVATURE;
D O I
10.33039/ami.2022.12.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce ruled like surfaces in three-dimensional Euclidean space, E3. To form a ruled like surface in E3, we consider a base curve gamma(s) and a director curve X(s). Let parameter s be the angle between the tangent of gamma(s) and X(s) when X(s) lie on rectifying plane or in the osculating plane. Whereas, if X(s) is in the normal plane, then parameter s will be the angle between the normal of gamma(s) and position vector of X(s) at the corresponding point in E3. Then we investigate some characterizations of such types of surfaces (say S(s, v)). Moreover, we find the condition for the existence of Bertrand mate of gamma(s) in S(s, v). Finally, as examples, we construct the surfaces S(s, v) by using a straight line, circle and helix in E3.
引用
收藏
页码:83 / 101
页数:19
相关论文
共 50 条
  • [1] STRICTIONAL PROPERTIES OF RULED SURFACES IN NORMAL-DIMENSIONAL EUCLIDEAN SPACE
    KOCH, R
    MONATSHEFTE FUR MATHEMATIK, 1977, 83 (02): : 133 - 146
  • [2] SPACE OF MOMENTS IN THE GEOMETRY OF PAIRS OF RULED SURFACES OF THE 4-DIMENSIONAL EUCLIDEAN-SPACE
    NORDEN, AP
    KHARISOVA, NK
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1988, (11): : 33 - 35
  • [3] Cyclic and ruled Lagrangian surfaces in Euclidean four space
    Anciaux, Henri
    Romon, Pascal
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2009, 40 (03): : 341 - 369
  • [4] Quasi Ruled Surfaces in Euclidean 3-space
    Elsharkawy, Ayman
    Elsayied, Hoda K.
    Refaat, Aya
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2025, 18 (01):
  • [5] Cyclic and ruled Lagrangian surfaces in Euclidean four space
    Henri Anciaux
    Pascal Romon
    Bulletin of the Brazilian Mathematical Society, New Series, 2009, 40 : 341 - 369
  • [6] KINEMATICAL INVARIANTS AND APPLICATIONS FOR SURFACES IN THREE DIMENSIONAL EUCLIDEAN SPACE
    Dal Jung, Seoung
    Liu, Huili
    Liu, Yixuan
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2024, 39 (03): : 757 - 774
  • [7] Structure and characterization of ruled surfaces in Euclidean 3-space
    Yu, Yanhua
    Liu, Huili
    Dal Jung, Seoung
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 233 : 252 - 259
  • [8] On the trajectory ruled surfaces of framed base curves in the Euclidean space
    Yildiz, Onder Gokmen
    Akyigit, Mahmut
    Tosun, Murat
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (09) : 7463 - 7470
  • [9] On Ruled Surfaces with a Sannia Frame in Euclidean 3-space
    Senyurt, Suleyman
    Eren, Kemal
    KYUNGPOOK MATHEMATICAL JOURNAL, 2022, 62 (03): : 509 - 531
  • [10] Singular Surfaces of Osculating Circles in Three-Dimensional Euclidean Space
    Liu, Kemeng
    Li, Zewen
    Pei, Donghe
    MATHEMATICS, 2023, 11 (17)