Delocalized Lithium Ion Flux by Solid-State Electrolyte Composites Coupled with 3D Porous Nanostructures for Highly Stable Lithium Metal Batteries

被引:17
|
作者
Lee, Jooyoung [1 ]
Park, Hyunji [1 ]
Hwang, Jieun [1 ]
Noh, Juran [2 ]
Yu, Choongho [1 ,2 ]
机构
[1] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA
[2] Texas A&M Univ, Dept Mat Sci & Engn, College Stn, TX 77843 USA
关键词
lithium metal; solid-state electrolyte; composite; carbon nanotube; delocalized lithium ion; GEL POLYMER ELECTROLYTE; PVDF-HFP; LI; PERFORMANCE; CATHODE; DENSITY; ANODES; CONDUCTIVITY; DEGRADATION; MECHANISMS;
D O I
10.1021/acsnano.3c04526
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This work investigates the root cause of failure withthe ultimateanode, Li metal, when employing conventional/composite separatorsand/or porous anodes. Then a feasible route of utilizing Li metalis presented. Our operando and microscopy studies have unveiled thatLi(+) flux passing through the conventional separator isnot uniform, resulting in preferential Li plating/stripping. Porousanodes alone are subject to clogging with moderate- or high-loadingcathodes. Here we discovered it is necessary to seek synergy fromour separator and anode pair to deliver delocalized Li+ to the anode and then uniformly plate Li metal over the large surfaceareas of the porous anode. Our polymer composite separator containinga solid-state electrolyte (SE) can provide numerous Li+ passages through the percolated SE and pore networks. Our finiteelement analysis and comparative tests disclosed the synergy betweenthe homogeneous Li+ flux and current density reductionon the anode. Our composite separators have induced compact and uniformLi plating with robust inorganic-rich solid electrolyte interphaselayers. The porous anode decreased the nucleation overpotential andinterfacial contact impedance during Li plating. Full cell tests withLiFePO(4) and Li[Ni0.8Mn0.1Co0.1]O-2 (NMC811) exhibited remarkable cycling behaviors: & SIM;80%capacity retention at the 750th and 235th cycle, respectively. A high-loadingNMC811 (4 mAh cm(-2)) full cell displayed maximumcell-level energy densities of 334 Wh kg(-1) and 783Wh L-1. This work proposes a solution for raisingenergy density by adopting Li metal, which could be a viable optionconsidering only incremental advancement in conventional cathodeslately.
引用
收藏
页码:16020 / 16035
页数:16
相关论文
共 50 条
  • [1] Mechanical stable composite electrolyte for solid-state lithium metal batteries
    Zhao, Wenlong
    Wang, Huihui
    Dong, Qingyu
    Shao, Hui
    Zhang, Yanyan
    Tang, Yuxin
    Shen, Yanbin
    Chen, Liwei
    CHEMICAL ENGINEERING JOURNAL, 2025, 505
  • [2] Ultrathin and Robust Composite Electrolyte for Stable Solid-State Lithium Metal Batteries
    Ma, Yuetao
    Wang, Chengrui
    Yang, Ke
    Li, Boyu
    Li, Yuhang
    Guo, Shaoke
    Lv, Jianshuai
    An, Xufei
    Liu, Ming
    He, Yan-Bing
    Kang, Feiyu
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (14) : 17978 - 17985
  • [3] 3D glass fiber cloth reinforced polymer electrolyte for solid-state lithium metal batteries
    Zhang, Zheng
    Huang, Ying
    Gao, Heng
    Li, Chao
    Huang, Jiaxin
    Liu, Panbo
    JOURNAL OF MEMBRANE SCIENCE, 2021, 621
  • [4] Amorphous-Carbon-Coated 3D Solid Electrolyte for an Electro-Chemomechanically Stable Lithium Metal Anode in Solid-State Batteries
    Xie, Hua
    Yang, Chunpeng
    Ren, Yaoyu
    Xu, Shaomao
    Hamann, Tanner R.
    McOwen, Dennis Wayne
    Wachsman, Eric D.
    Hu, Liangbing
    NANO LETTERS, 2021, 21 (14) : 6163 - 6170
  • [5] Early Lithium Plating Behavior in Confined Nanospace of 3D Lithiophilic Carbon Matrix for Stable Solid-State Lithium Metal Batteries
    Huang, Shaobo
    Yang, Hao
    Hu, Jiangkui
    Liu, Yongchang
    Wang, Kexin
    Peng, Hailin
    Zhang, Hao
    Fan, Li-Zhen
    SMALL, 2019, 15 (43)
  • [6] Synthesis of Single Lithium-Ion Conducting Polymer Electrolyte Membrane for Solid-State Lithium Metal Batteries
    Luo, Guangmei
    Yuan, Bing
    Guan, Tianyun
    Cheng, Fangyi
    Zhang, Wangqing
    Chen, Jun
    ACS APPLIED ENERGY MATERIALS, 2019, 2 (05) : 3028 - 3034
  • [7] 3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries
    Jin, Chengbin
    Sheng, Ouwei
    Luo, Jianmin
    Yuan, Huadong
    Fang, Cong
    Zhang, Wenkui
    Huang, Hui
    Gan, Yongping
    Xia, Yang
    Liang, Chu
    Zhang, Jun
    Tao, Xinyong
    NANO ENERGY, 2017, 37 : 177 - 186
  • [8] A Lithiophilic-Lithiophobic Gradient Solid Electrolyte Interface Toward a Highly Stable Solid-State Polymer Lithium Metal Batteries
    Zhai, Pengfei
    Ahmad, Niaz
    Qu, Shuangquan
    Feng, Ligang
    Yang, Wen
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (27)
  • [9] Properties of lithium phosphorus oxynitride (Lipon) for 3D solid-state lithium batteries
    Fan Xu
    Nancy J. Dudney
    Gabriel M. Veith
    Yoongu Kim
    Can Erdonmez
    Wei Lai
    Yet-Ming Chiang
    Journal of Materials Research, 2010, 25 : 1507 - 1515
  • [10] A 3D Lithium/Carbon Fiber Anode with Sustained Electrolyte Contact for Solid-State Batteries
    Zhang, Ying
    Shi, Yang
    Hu, Xin-Cheng
    Wang, Wen-Peng
    Wen, Rui
    Xin, Sen
    Guo, Yu-Guo
    ADVANCED ENERGY MATERIALS, 2020, 10 (03)