Fractional-Order Sliding-Mode Observers for the Estimation of State-of-Charge and State-of-Health of Lithium Batteries

被引:9
|
作者
Zhou, Minghao [1 ]
Wei, Kemeng [1 ]
Wu, Xiaogang [1 ]
Weng, Ling [2 ]
Su, Hongyu [1 ]
Wang, Dong [1 ]
Zhang, Yuanke [1 ]
Li, Jialin [1 ]
机构
[1] Harbin Univ Sci & Technol, Sch Elect & Elect Engn, Harbin 150080, Peoples R China
[2] Harbin Univ Sci & Technol, Sch Mat Sci & Chem Engn, Harbin 150080, Peoples R China
来源
BATTERIES-BASEL | 2023年 / 9卷 / 04期
基金
中国国家自然科学基金;
关键词
sliding-mode observer (SMO); state-of-charge (SoC); state-of-health (SoH); lithium battery; EXTENDED KALMAN FILTER;
D O I
10.3390/batteries9040213
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Lithium batteries are widely used in power storage and new energy vehicles due to their high energy density and long cycle life. The accurate and real-time estimation for the state-of-charge (SoC) and the state-of-health (SoH) of lithium batteries is of great significance to improve battery life, reliability, and utilization efficiency. In this paper, three cascaded fractional-order sliding-mode observers (FOSMOs) are designed for the estimation of SoC by observing the terminal voltage, the polarization voltage, and the open-circuit voltage of a lithium cell, respectively. Furthermore, to calculate the value of the SoH, two FOSMOs are developed to estimate the capacity and internal resistance of the lithium cell. The control signals of the observers are continuous by utilizing fractional-order sliding manifolds without low-pass filters. Compared with the existing sliding-mode observers for SoC and SoH, weaker chattering, faster response, and higher estimation accuracy are obtained in the proposed method. Finally, the experiment tests demonstrate the validity and feasibility of the proposed observer design method.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Higher Order Sliding-Mode Observers for State-of-Charge and State-of-Health Estimation of Lithium-Ion Batteries
    Obeid, Hussein
    Petrone, Raffaele
    Chaoui, Hicham
    Gualous, Hamid
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (04) : 4482 - 4492
  • [2] Robust Estimation for State-of-Charge and State-of-Health of Lithium-Ion Batteries Using Integral-Type Terminal Sliding-Mode Observers
    Feng, Yong
    Xue, Chen
    Han, Qing-Long
    Han, Fengling
    Du, Jiacheng
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2020, 67 (05) : 4013 - 4023
  • [3] State-of-Charge and State-of-Energy Estimation for Lithium-ion Batteries Using Sliding-Mode Observers
    Feng, Yong
    Bai, Fan
    Xue, Chen
    Han, Fengling
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 2382 - 2385
  • [4] Estimating the State of Charge of Lithium Batteries based on Fractional-order Sliding-Mode Observer
    Yin, Chun
    Zhong, QiShui
    Chen, YangQuan
    Zhong, Shou-ming
    2014 INTERNATIONAL CONFERENCE ON FRACTIONAL DIFFERENTIATION AND ITS APPLICATIONS (ICFDA), 2014,
  • [5] State-of-Charge and State-of-Health Estimation in Li-Ion Batteries Using Cascade Electrochemical Model-Based Sliding-Mode Observers
    Feng, Yong
    Xue, Chen
    Han, Fengling
    Cao, Zhenwei
    Yang, Rebecca Jing
    BATTERIES-BASEL, 2024, 10 (08):
  • [6] Co-estimation of lithium-ion battery state-of-charge and state-of-health based on fractional-order model
    Ye, Lihua
    Peng, Dinghan
    Xue, Dingbang
    Chen, Sijian
    Shi, Aiping
    JOURNAL OF ENERGY STORAGE, 2023, 65
  • [7] Implementation of State-of-Charge and State-of-Health Estimation for Lithium-Ion Batteries
    Lin, Chang-Hua
    Wang, Chien-Ming
    Ho, Chien-Yeh
    PROCEEDINGS OF THE IECON 2016 - 42ND ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2016, : 4790 - 4795
  • [8] State-of-Charge Estimation with State-of-Health Calibration for Lithium-Ion Batteries
    Wu, Tsung-Hsi
    Moo, Chin-Sien
    ENERGIES, 2017, 10 (07):
  • [9] State-of-Charge and State-of-Health Estimation for Lithium-Ion Batteries Based on Dual Fractional-Order Extended Kalman Filter and Online Parameter Identification
    Ling, Liuyi
    Wei, Ying
    IEEE ACCESS, 2021, 9 : 47588 - 47602
  • [10] State-of-charge estimation for lithium-ion batteries based on incommensurate fractional-order observer
    Chen, Liping
    Guo, Wenliang
    Lopes, Antonio M.
    Wu, Ranchao
    Li, Penghua
    Yin, Lisheng
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 118