Brain-inspired STA for parameter estimation of fractional-order memristor-based chaotic systems

被引:3
|
作者
Huang, Zhaoke [1 ,2 ]
Yang, Chunhua [1 ]
Zhou, Xiaojun [1 ,2 ]
Gui, Weihua [1 ]
Huang, Tingwen [3 ]
机构
[1] Cent South Univ, Sch Automat, Changsha 410083, Hunan, Peoples R China
[2] Peng Cheng Lab, Shenzhen 518000, Guangdong, Peoples R China
[3] Texas A&M Univ Qatar, Doha 23874, Qatar
基金
中国国家自然科学基金;
关键词
Parameter estimation; Fractional-order chaotic systems; Memristor; State transition algorithm; SYNCHRONIZATION; OPTIMIZATION; ALGORITHM;
D O I
10.1007/s10489-022-04435-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
It is very important to estimate the unknown parameters of the fractional-order memristor-based chaotic systems (FOMCSs). In this study, a brain-inspired state transition algorithm (BISTA) is proposed to estimate the parameters of the FOMCSs. In order to generate a better initial population, a novel initialization approach based on opposition-based learning is presented. To balance the global search and local search, and accelerate the convergence speed, the mutual learning and selective learning are proposed in the optimization process. The performance of the proposed algorithm is comprehensively evaluated on two typical FOMCSs. The simulation results and statistical analysis have demonstrated the effectiveness of the proposed algorithm. For the fractional-order memristor-based Lorenz system, the proposed method can increase the estimated value of parameters by at least one order of magnitude compared with the other methods.
引用
收藏
页码:18653 / 18665
页数:13
相关论文
共 50 条
  • [1] Brain-inspired STA for parameter estimation of fractional-order memristor-based chaotic systems
    Zhaoke Huang
    Chunhua Yang
    Xiaojun Zhou
    Weihua Gui
    Tingwen Huang
    Applied Intelligence, 2023, 53 : 18653 - 18665
  • [2] On the simplest fractional-order memristor-based chaotic system
    Donato Cafagna
    Giuseppe Grassi
    Nonlinear Dynamics, 2012, 70 : 1185 - 1197
  • [3] On the simplest fractional-order memristor-based chaotic system
    Cafagna, Donato
    Grassi, Giuseppe
    NONLINEAR DYNAMICS, 2012, 70 (02) : 1185 - 1197
  • [4] A new memristor-based fractional-order chaotic system
    Peng, Qiqi
    Gu, Shuangquan
    Leng, Xiangxin
    Du, Baoxiang
    PHYSICA SCRIPTA, 2021, 96 (12)
  • [5] Parameter estimation of unknown fractional-order memristor-based chaotic systems by a hybrid artificial bee colony algorithm combined with differential evolution
    Gu, Wenjuan
    Yu, Yongguang
    Hu, Wei
    NONLINEAR DYNAMICS, 2016, 84 (02) : 779 - 795
  • [6] Parameter estimation of unknown fractional-order memristor-based chaotic systems by a hybrid artificial bee colony algorithm combined with differential evolution
    Wenjuan Gu
    Yongguang Yu
    Wei Hu
    Nonlinear Dynamics, 2016, 84 : 779 - 795
  • [7] Synchronization of fractional-order different memristor-based chaotic systems using active control
    Rakkiyappan, R.
    Sivasamy, R.
    Park, Ju H.
    CANADIAN JOURNAL OF PHYSICS, 2014, 92 (12) : 1688 - 1695
  • [8] Fractional-order simplest memristor-based chaotic circuit with new derivative
    Jingya Ruan
    Kehui Sun
    Jun Mou
    Shaobo He
    Limin Zhang
    The European Physical Journal Plus, 133
  • [9] Fractional-order simplest memristor-based chaotic circuit with new derivative
    Ruan, Jingya
    Sun, Kehui
    Mou, Jun
    He, Shaobo
    Zhang, Limin
    EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (01): : 1 - 12
  • [10] Fractional-order memristor-based chaotic jerk system with no equilibrium point and its fractional-order backstepping control
    Prakash, Pankaj
    Singh, Jay Prakash
    Roy, B. K.
    IFAC PAPERSONLINE, 2018, 51 (01): : 1 - 6