Lipschitz means and mixers on metric spaces

被引:1
|
作者
Kovalev, Leonid V. [1 ]
机构
[1] Syracuse Univ, Dept Math, 215 Carnegie, Syracuse, NY 13244 USA
关键词
HOMOTOPY-GROUPS; QUASICIRCLES;
D O I
10.1215/00192082-11081300
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The standard arithmetic measures of center, the mean, and the median, have natural topological counterparts that have been widely used in continuum theory. In the context of metric spaces, it is natural to consider the Lipschitz continuous versions of the mean and median. We show that they are related to familiar concepts of the geometry of metric spaces: the bounded turning property, the existence of quasisymmetric parameterization, and others.
引用
收藏
页码:167 / 187
页数:22
相关论文
共 50 条
  • [1] Lipschitz Isomorphisms of Metric Spaces
    Cobzas, Stefan
    Miculescu, Radu
    Nicolae, Adriana
    LIPSCHITZ FUNCTIONS, 2019, 2241 : 335 - 363
  • [2] Lipschitz Clustering in Metric Spaces
    Kovalev, Leonid V.
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (07)
  • [3] Lipschitz Clustering in Metric Spaces
    Leonid V. Kovalev
    The Journal of Geometric Analysis, 2022, 32
  • [4] Spaces of Lipschitz type on metric spaces and their applications
    Yang, DC
    Lin, Y
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2004, 47 : 709 - 752
  • [5] Lipschitz Algebras and Lipschitz-Free Spaces Over Unbounded Metric Spaces
    Albiac, Fernando
    Ansorena, Jose L.
    Cuth, Marek
    Doucha, Michal
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (20) : 16327 - 16362
  • [6] Pointwise Lipschitz functions on metric spaces
    Durand-Cartagena, E.
    Jaramillo, J. A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 363 (02) : 525 - 548
  • [7] LIPSCHITZ MAPPINGS OF METRIC-SPACES
    KADETS, VM
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1985, (01): : 30 - 34
  • [8] Lipschitz-free Spaces on Finite Metric Spaces
    Dilworth, Stephen J.
    Kutzarova, Denka
    Ostrovskii, Mikhail, I
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2020, 72 (03): : 774 - 804
  • [9] Quasiconformal, Lipschitz, and BV mappings in metric spaces
    Lahti, Panu
    ADVANCES IN CALCULUS OF VARIATIONS, 2024, 17 (03) : 855 - 879
  • [10] Continuous selections of Lipschitz extensions in metric spaces
    Rafa Espínola
    Adriana Nicolae
    Revista Matemática Complutense, 2015, 28 : 741 - 759