Optimized EEG based mood detection with signal processing and deep neural networks for brain-computer interface

被引:2
|
作者
Adhikary, Subhrangshu [1 ]
Jain, Kushal [2 ,3 ]
Saha, Biswajit [4 ]
Chowdhury, Deepraj [5 ]
机构
[1] Spiraldevs Automat Ind Pvt Ltd, Dept Res & Dev, Uttar Dinajpur 733123, W Bengal, India
[2] Vardhman Mahaveer Med Coll, New Delhi 110029, India
[3] Safdarjang Hosp, New Delhi 110029, India
[4] Dr BC Roy Engn Coll, Dept Comp Sci & Engn, Durgapur 713206, W Bengal, India
[5] Int Inst Informat Technol Naya Raipur, Dept Elect & Commun Engn, Naya Raipur, India
关键词
electroencephalogram; signals; detections; processing; neural; networks; INDEPENDENT COMPONENT ANALYSIS;
D O I
10.1088/2057-1976/acb942
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Electroencephalogram (EEG) is a very promising and widely implemented procedure to study brain signals and activities by amplifying and measuring the post-synaptical potential arising from electrical impulses produced by neurons and detected by specialized electrodes attached to specific points in the scalp. It can be studied for detecting brain abnormalities, headaches, and other conditions. However, there are limited studies performed to establish a smart decision-making model to identify EEG's relation with the mood of the subject. In this experiment, EEG signals of 28 healthy human subjects have been observed with consent and attempts have been made to study and recognise moods. Savitzky-Golay band-pass filtering and Independent Component Analysis have been used for data filtration.Different neural network algorithms have been implemented to analyze and classify the EEG data based on the mood of the subject. The model is further optimised by the usage of Blackman window-based Fourier Transformation and extracting the most significant frequencies for each electrode. Using these techniques, up to 96.01% detection accuracy has been obtained.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] BCINet: An Optimized Convolutional Neural Network for EEG-Based Brain-Computer Interface Applications
    Singh, Avinash Kumar
    Tao, Xian
    2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2020, : 582 - 587
  • [2] Application of t-statistics for processing of EEG signal in brain-computer interface
    Kolodziej, Marcin
    Majkowski, Andrzej
    Rak, Remigiusz J.
    PRZEGLAD ELEKTROTECHNICZNY, 2011, 87 (9A): : 187 - 189
  • [3] Design and operation of an EEG-based brain-computer interface with digital signal processing technology
    Dennis J. McFarland
    A. Todd Lefkowicz
    Jonathan R. Wolpaw
    Behavior Research Methods, Instruments, & Computers, 1997, 29 : 337 - 345
  • [4] Design and operation of an EEG-based brain-computer interface with digital signal processing technology
    McFarland, DJ
    Lefkowicz, AT
    Wolpaw, JR
    BEHAVIOR RESEARCH METHODS INSTRUMENTS & COMPUTERS, 1997, 29 (03): : 337 - 345
  • [5] Robust classification of EEG signal for brain-computer interface
    Thulasidas, M
    Guan, C
    Wu, JK
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2006, 14 (01) : 24 - 29
  • [6] Comprehensive EEG Signal Analysis for Brain-Computer Interface
    Gao, Shangkai
    Gao, Xiaorong
    Hong, Bo
    ADVANCES IN COGNITIVE NEURODYNAMICS, PROCEEDINGS, 2008, : 651 - 653
  • [7] Deep Residual Convolutional Neural Networks for Brain-Computer Interface to Visualize Neural Processing of Hand Movements in the Human Brain
    Fujiwara, Yosuke
    Ushiba, Junichi
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2022, 16
  • [8] EEG processing and its application in brain-computer interface
    Wang Jing
    Xu Guanghua
    Xie Jun
    Zhang Feng
    Li Lili
    Han Chengcheng
    Li Yeping
    Sun Jingjing
    EngineeringSciences, 2013, 11 (01) : 54 - 61
  • [9] A Review on Signal Processing Approaches to Reduce Calibration Time in EEG-Based Brain-Computer Interface
    Huang, Xin
    Xu, Yilu
    Hua, Jing
    Yi, Wenlong
    Yin, Hua
    Hu, Ronghua
    Wang, Shiyi
    FRONTIERS IN NEUROSCIENCE, 2021, 15
  • [10] Brain-computer interface for electric wheelchair based on alpha waves of EEG signal
    Banach, Kacper
    Malecki, Mateusz
    Rosol, Maciej
    Broniec, Anna
    BIO-ALGORITHMS AND MED-SYSTEMS, 2021, 17 (03) : 165 - 172