Automation of Crop Disease Detection through Conventional Machine Learning and Deep Transfer Learning Approaches

被引:7
|
作者
Orchi, Houda [1 ]
Sadik, Mohamed [1 ]
Khaldoun, Mohammed [1 ]
Sabir, Essaid [1 ,2 ]
机构
[1] Hassan II Univ Casablanca, Natl Higher Sch Elect & Mech ENSEM, Engn Res Lab LRI, NEST Res Grp,Dept Elect Engn, Casablanca 20000, Morocco
[2] Univ Quebec Montreal UQAM, Comp Sci Dept, Montreal, PQ H2L 2C4, Canada
来源
AGRICULTURE-BASEL | 2023年 / 13卷 / 02期
关键词
traditional machine learning; deep learning; crop disease detection; classification accuracy; deep learning optimizers; activation functions; NEURAL-NETWORKS; CLASSIFICATION;
D O I
10.3390/agriculture13020352
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
With the rapid population growth, increasing agricultural productivity is an extreme requirement to meet demands. Early identification of crop diseases is essential to prevent yield loss. Nevertheless, it is a tedious task to manually monitor leaf diseases, as it demands in-depth knowledge of plant pathogens as well as a lot of work, and excessive processing time. For these purposes, various methods based on image processing, deep learning, and machine learning are developed and examined by researchers for crop leaf disease identification and often have obtained significant results. Motivated by this existing work, we conducted an extensive comparative study between traditional machine learning (SVM, LDA, KNN, CART, RF, and NB) and deep transfer learning (VGG16, VGG19, InceptionV3, ResNet50, and CNN) models in terms of precision, accuracy, f1-score, and recall on a dataset taken from the PlantVillage Dataset composed of diseased and healthy crop leaves for binary classification. Moreover, we applied several activation functions and deep learning optimizers to further enhance these CNN architectures' performance. The classification accuracy (CA) of leaf diseases that we obtained by experimentation is quite impressive for all models. Our findings reveal that NB gives the least CA at 60.09%, while the InceptionV3 model yields the best CA, reaching an accuracy of 98.01%.
引用
收藏
页数:35
相关论文
共 50 条
  • [1] Machine Learning and Deep Learning Approaches for Guava Disease Detection
    K. Paramesha
    Shruti Jalapur
    Shalini Hanok
    Kiran Puttegowda
    G. Manjunatha
    Bharath Kumara
    SN Computer Science, 6 (4)
  • [2] Survey on crop pest detection using deep learning and machine learning approaches
    Chithambarathanu, M.
    Jeyakumar, M. K.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (27) : 42277 - 42310
  • [3] Survey on crop pest detection using deep learning and machine learning approaches
    M. Chithambarathanu
    M. K. Jeyakumar
    Multimedia Tools and Applications, 2023, 82 : 42277 - 42310
  • [4] Exploration of machine learning approaches for automated crop disease detection
    Singla, Annu
    Nehra, Ashima
    Joshi, Kamaldeep
    Kumar, Ajit
    Tuteja, Narendra
    Varshney, Rajeev K.
    Gill, Sarvajeet Singh
    Gill, Ritu
    CURRENT PLANT BIOLOGY, 2024, 40
  • [5] AI-Based Crop Disease Detection: Evaluation of Wheat Rust Disease Detection and Classification Using Deep Learning and Machine Learning Approaches
    Akinosun, Temitayo
    Nibouche, Omar
    2023 31ST IRISH CONFERENCE ON ARTIFICIAL INTELLIGENCE AND COGNITIVE SCIENCE, AICS, 2023,
  • [6] A comprehensive review on detection of plant disease using machine learning and deep learning approaches
    Jackulin C.
    Murugavalli S.
    Measurement: Sensors, 2022, 24
  • [7] Diabetes detection based on machine learning and deep learning approaches
    Boon Feng Wee
    Saaveethya Sivakumar
    King Hann Lim
    W. K. Wong
    Filbert H. Juwono
    Multimedia Tools and Applications, 2024, 83 : 24153 - 24185
  • [8] Diabetes detection based on machine learning and deep learning approaches
    Wee, Boon Feng
    Sivakumar, Saaveethya
    Lim, King Hann
    Wong, W. K.
    Juwono, Filbert H.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (8) : 24153 - 24185
  • [9] Crop mapping through a hybrid machine learning and deep learning method
    Asadi, Bahar
    Shamsoddini, Ali
    REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2024, 33
  • [10] Crop Disease Detection Using Deep Learning
    Kulkarni, Omkar
    2018 FOURTH INTERNATIONAL CONFERENCE ON COMPUTING COMMUNICATION CONTROL AND AUTOMATION (ICCUBEA), 2018,