Electrochemical sensor based on molecularly imprinted polymer and graphene oxide nanocomposite for monitoring glyphosate content in corn

被引:3
|
作者
Ren, Xuejiao [1 ]
Zeng, Hui [1 ]
Zhang, Qiyuan [1 ]
Cai, Hongyu [1 ]
Yang, Wei [1 ]
机构
[1] Jilin Agr Univ, Fac Agron, Changchun 130118, Peoples R China
来源
关键词
Glyphosate; Molecularly Imprinted Polymer; Food Samples; Nanocomposite; Graphene Oxide; Electrochemical Techniques; MINIMUM-QUANTITY LUBRICATION; AMINOMETHYLPHOSPHONIC ACID; ZIRCONIA CERAMICS; CHIP THICKNESS; PERFORMANCE; CHROMATOGRAPHY; MODEL; WATER;
D O I
10.20964/2022.12.87
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The current study has been focused on the preparation of an electrochemical sensor based on molecularly imprinted polymer and graphene oxide nanocomposite modified glassy carbon electrode (MIP@GO/GCE) for monitoring glyphosate (GPh) content in corn. The MIP-based nanocomposite was prepared through the polymerization of pyrrole on GO nanosheets. The structural studies of synthesized MIP-based nanocomposite by SEM and XRD analyses indicated effective polymerization PPy on the surface of GO. Electrochemical analyses demonstrated that MIP@GO/GCE showed the sensitive and selective electrocatalytic response to GPh in electrochemical cells, and indicated a sensitivity of 0.1271 mu A/mu M and a stable linear range from 0 to 1800 mu M. The sensor for GPh reached a low detection limit of 11 mu M. The results revealed that MIP@GO/GCE possessed the broad linear range and relatively low detection limit value between the recent GPh sensors. The applicability and validity of the MIP@GO/GCE as GPh sensor in food samples was examined and results exhibited that the obtained recovery (97.00% to 98.25%) and RSD (3.58% to 4.25%) values were acceptable. It reflected the appropriate accuracy and validity of results of MIP@GO/GCE for the determination of GPh level in food samples.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] A highly selective and sensitive electrochemical sensor based on graphene oxide and molecularly imprinted polymer magnetic nanocomposite for patulin determination
    Afzali, Zahra
    Mohadesi, Alireza
    Karimi, Mohammad Ali
    Fathirad, Fariba
    MICROCHEMICAL JOURNAL, 2022, 177
  • [2] Molecularly imprinted polymer-based electrochemical sensor for the sensitive detection of glyphosate herbicide
    Do, Minh Huy
    Florea, Anca
    Farre, Carole
    Bonhomme, Anne
    Bessueille, Francois
    Vocanson, Francis
    Tran-Thi, Nhu-Trang
    Jaffrezic-Renault, Nicole
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL ANALYTICAL CHEMISTRY, 2015, 95 (15) : 1489 - 1501
  • [3] Fabrication of a Molecularly-Imprinted-Polymer-Based Graphene Oxide Nanocomposite for Electrochemical Sensing of New Psychoactive Substances
    Jiang, Xue
    Wu, Fangsheng
    Huang, Xiaoyu
    He, Shan
    Han, Qiaoying
    Zhang, Zihua
    Liu, Wenbin
    NANOMATERIALS, 2023, 13 (04)
  • [4] Molecularly imprinted polypyrrole nanotubes based electrochemical sensor for glyphosate detection
    Ding, Shichao
    Lyu, Zhaoyuan
    Li, Suiqiong
    Ruan, Xiaofan
    Fei, Mingen
    Zhou, Yang
    Niu, Xiangheng
    Zhu, Wenlei
    Du, Dan
    Lin, Yuehe
    BIOSENSORS & BIOELECTRONICS, 2021, 191
  • [5] Fabrication and application of electrochemical sensor for dichlorvos detection based on graphene and molecularly imprinted polymer
    Zhao, Yongfu
    Liu, Hui
    Wang, Ling
    Han, Huaiyuan
    Chinese Journal of Analysis Laboratory, 2022, 41 (11) : 1285 - 1291
  • [6] An electrochemical sensor for the determination of phoxim based on a graphene modified electrode and molecularly imprinted polymer
    Tan, Xuecai
    Wu, Jiawen
    Hu, Qi
    Li, Xiaoyu
    Li, Pengfei
    Yu, Huicheng
    Li, Xiaoyan
    Lei, Fuhou
    ANALYTICAL METHODS, 2015, 7 (11) : 4786 - 4792
  • [7] Electrochemical Sensor for Determination of Chlorpyrifos Based on Graphene Modified Electrode and Molecularly Imprinted Polymer
    Tan Xue-Cai
    Wu Jia-Wen
    Hu Qi
    Li Xiao-Yu
    Li Peng-Fei
    Yu Hui-Cheng
    Li Xiao-Yan
    Lei Fu-Hou
    CHINESE JOURNAL OF ANALYTICAL CHEMISTRY, 2015, 43 (03) : 387 - 393
  • [8] Fabrication of electrochemical sensor based on nanocomposite of zinc oxide nanoparticle-molecularly imprinted polymer for determination of tyrosine in food
    Jiang, Jialiang
    Wang, Xueli
    Qi, Hairui
    Han, Ying
    JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION, 2024, 18 (09) : 7739 - 7750
  • [9] Electrochemical quercetin sensor based on a nanocomposite consisting of magnetized reduced graphene oxide, silver nanoparticles and a molecularly imprinted polymer on a screen-printed electrode
    Yao, Zufu
    Yang, Xin
    Liu, Xiaobo
    Yang, Yaqi
    Hu, Yangjian
    Zhao, Zijian
    MICROCHIMICA ACTA, 2018, 185 (01)
  • [10] Electrochemical quercetin sensor based on a nanocomposite consisting of magnetized reduced graphene oxide, silver nanoparticles and a molecularly imprinted polymer on a screen-printed electrode
    Zufu Yao
    Xin Yang
    Xiaobo Liu
    Yaqi Yang
    Yangjian Hu
    Zijian Zhao
    Microchimica Acta, 2018, 185