Quaternary CsPbX3 (X = Cl1-xBrx, Br1-xIx) alloy microplates synthesized by single-step chemical vapor deposition and their two-photon absorption (TPA) properties

被引:1
|
作者
Hossain, Mohammad Kamal [1 ,2 ]
Qarony, Wayesh [4 ,5 ]
Wang, Ying [1 ]
Kwok, Cheuk Kai Gary [1 ]
Egbo, Kingsley O. [1 ]
Tsang, Yuen Hong [5 ]
Ho, Johnny C. [3 ]
Yu, Kin Man [1 ,3 ]
机构
[1] City Univ Hong Kong, Dept Phys, Kowloon, Hong Kong, Peoples R China
[2] Comilla Univ, Dept Phys, Kotbari 3506, Cumilla, Bangladesh
[3] City Univ Hong Kong, Dept Mat Sci & Engn, Kowloon, Hong Kong, Peoples R China
[4] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[5] Hong Kong Polytech Univ, Dept Appl Phys, Kowloon, Hong Kong, Peoples R China
关键词
AMPLIFIED SPONTANEOUS EMISSION; MIXED-HALIDE PEROVSKITES; SOLAR-CELLS; STABILITY; GROWTH; MODE; MICROSTRUCTURE; NANOCRYSTALS; EFFICIENCY; PHASE;
D O I
10.1039/d3tc03166g
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Because of their well-defined light-matter interaction volume, high-quality single-crystalline nature, and precise bandgap tunability, all-inorganic cesium lead halide (CsPbX3 (X = Cl, Br, I)) perovskite (IHP) microplates are of fundamental and technological interest today. Here, we report the synthesis and properties of ternary CsPbX3 (X = Cl, Br, I) and quaternary CsPbX3 (X = Cl1-xBrx, Br1-xIx) alloy microplates grown by the single-step chemical vapor deposition (CVD) process. Smooth-faceted, single crystalline IHP alloy microplates with good vertical and lateral composition uniformity are achieved. These microplates exhibit strong photoluminescence and are thermally stable with no observable photodegradation. More importantly, two-photon absorption (TPA) is demonstrated in quaternary CsPb(Cl1-xBrx)(3) and CsPb(Br(1-x)Ix)(3) IHP alloy microplates, which adds a new dimension to the functionalities of IHP microplates for nonlinear optical (NLO) applications. We believe that this work will open up multiple avenues for the development of microstructure compatible integrated optoelectronic and photonic applications and will certainly enhance the fundamental NLO research.
引用
收藏
页码:2561 / 2570
页数:10
相关论文
empty
未找到相关数据