S&GDA: An Unsupervised Domain Adaptive Semantic Segmentation Framework Considering Both Imaging Scene and Geometric Domain Shifts

被引:2
|
作者
Chen, Hui [1 ,2 ,3 ,4 ]
Cheng, Liang [1 ,2 ,3 ,4 ]
Li, Ning [1 ,2 ,3 ,4 ]
Yao, Yunchang [1 ,2 ,3 ,4 ]
Cheng, Jian [1 ,2 ,3 ,4 ]
Zhang, Ka [3 ,5 ]
机构
[1] Nanjing Univ, Sch Geog & Ocean Sci, Jiangsu Prov Key Lab Geog Informat Sci & Technol, Key Lab Land Satellite Remote Sensing Applicat,Min, Nanjing 210023, Jiangsu, Peoples R China
[2] Collaborat Innovat Ctr South China Sea Studies, Nanjing 210023, Jiangsu, Peoples R China
[3] Jiangsu Ctr Collaborat Innovat Geog Informat Resou, Nanjing 210023, Jiangsu, Peoples R China
[4] Jiangsu Ctr Collaborat Innovat Novel Software Tech, Nanjing 210023, Jiangsu, Peoples R China
[5] Nanjing Normal Univ, Key Lab Virtual Geog Environm, Minist Educ, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep learning; high-resolution remote-sensing (RS) images; land cover classification; semantic segmentation; unsupervised domain adaptation;
D O I
10.1109/TGRS.2023.3288289
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Unsupervised domain adaptation uses labeled data from a source domain (SD) to help learn a target domain (TD) without any labeled data. Previous studies have not systematically analyzed the causes of remote sensing (RS) domain shifts, making it difficult to effectively model domain shifts caused by differences in a geographic scene and platform imaging positions and attitudes. Therefore, this study conducts a detailed analysis of the causes of domain shifts in RS images, and an unsupervised domain adaptive semantic segmentation (UDASS) framework, called "S & GDA" that considers both imaging scene and geometric domain shifts is proposed. S & GDA comprised two modules: imaging scene simulation and imaging geometric simulation modules. The imaging scene simulation module is instrumental in mitigating domain shifts in geographical scenes due to variations in natural and human factors, thereby achieving cross-domain imaging scene consistency. Meanwhile, the imaging geometric simulation module allows for accurate simulation of domain shifts caused by changes in the position and attitude of a platform, ensuring cross-domain imaging geometry consistency. Note that none of these modules add additional parameters or computational complexity to the model as they only work on the input side of the data. Comprehensive experiments are conducted on the LoveDA and ISPRS datasets to evaluate S & GDA. Results indicate that S & GDA outperforms the state-of-the-art (SOTA) UDASS method by 3.12% of mIoU and can achieve 85% of the performance of the fully supervised method.
引用
收藏
页数:13
相关论文
共 34 条
  • [1] Geometric Unsupervised Domain Adaptation for Semantic Segmentation
    Guizilini, Vitor
    Li, Jie
    Ambrus, Rares
    Gaidon, Adrien
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 8517 - 8527
  • [2] A hybrid domain learning framework for unsupervised semantic segmentation
    Zhang, Yuhang
    Tian, Shishun
    Liao, Muxin
    Zou, Wenbin
    Xu, Chen
    NEUROCOMPUTING, 2023, 516 : 133 - 145
  • [3] Unsupervised Domain Adaptive Point Cloud Semantic Segmentation
    Bian, Yikai
    Xie, Jin
    Qian, Jianjun
    PATTERN RECOGNITION, ACPR 2021, PT I, 2022, 13188 : 285 - 298
  • [4] Adaptive Refining-Aggregation-Separation Framework for Unsupervised Domain Adaptation Semantic Segmentation
    Cao, Yihong
    Zhang, Hui
    Lu, Xiao
    Chen, Yurong
    Xiao, Zheng
    Wang, Yaonan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (08) : 3822 - 3832
  • [5] Unsupervised Domain-Adaptive Semantic Segmentation with Uncertainty Loss
    Kawano Y.
    Nota Y.
    Aoki Y.
    Seimitsu Kogaku Kaishi/Journal of the Japan Society for Precision Engineering, 2023, 89 (12): : 921 - 925
  • [6] Domain Adaptive Knowledge Distillation for Driving Scene Semantic Segmentation
    Kothandaraman, Divya
    Nambiar, Athira
    Mittal, Anurag
    2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WORKSHOPS (WACVW 2021), 2021, : 134 - 143
  • [7] Semantic Segmentation of Surgical Hyperspectral Images Under Geometric Domain Shifts
    Sellner, Jan
    Seidlitz, Silvia
    Studier-Fischer, Alexander
    Motta, Alessandro
    Oezdemir, Berkin
    Mueller-Stich, Beat Peter
    Nickel, Felix
    Maier-Hein, Lena
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT IX, 2023, 14228 : 618 - 627
  • [8] Exploring High-quality Target Domain Information for Unsupervised Domain Adaptive Semantic Segmentation
    Li, Junjie
    Wang, Zilei
    Gao, Yuan
    Hu, Xiaoming
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 5237 - 5245
  • [9] Region-Aware Semantic Consistency for Unsupervised Domain-Adaptive Semantic Segmentation
    Xie, Jun
    Zhou, Yixuan
    Xu, Xing
    Wang, Guoqing
    Shen, Fumin
    Yang, Yang
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 90 - 95
  • [10] An uncertainty-aware domain adaptive semantic segmentation framework
    Yin H.
    Wang P.
    Liu B.
    Yan J.
    Autonomous Intelligent Systems, 2024, 4 (01):