Machine learning for the detection of social anxiety disorder using effective connectivity and graph theory measures (vol 14, 1155812, 2023)

被引:0
|
作者
Al-Ezzi, Abdulhakim [1 ]
Kamel, Nidal [2 ]
Al-Shargabi, Amal A. A. [3 ]
Al-Shargie, Fares [4 ]
Al-Shargabi, Alaa [5 ]
Yahya, Norashikin [1 ]
Al-Hiyali, Mohammed Isam [1 ]
机构
[1] Univ Teknol PETRONAS, Ctr Intelligent Signal & Imaging Res CISIR, Elect & Elect Engn Dept, Bandar Seri Iskandar, Perak, Malaysia
[2] VinUniversity, Coll Engn & Comp Sci, Hanoi, Vietnam
[3] Qassim Univ, Coll Comp, Dept Informat Technol, Buraydah, Saudi Arabia
[4] Abu Dhabi Univ, Fac Engn, Abu Dhabi, U Arab Emirates
[5] Univ Teknl Malaysia, Dept Informat Technol, Skudai, Malaysia
来源
FRONTIERS IN PSYCHIATRY | 2023年 / 14卷
关键词
EEG; graph theory analysis; social anxiety disorders; machine learning; effective connectivity; partial directed coherence; support vector machine; event related potential;
D O I
10.3389/fpsyt.2023.1257713
中图分类号
R749 [精神病学];
学科分类号
100205 ;
摘要
引用
收藏
页数:2
相关论文
共 30 条
  • [1] Machine learning for the detection of social anxiety disorder using effective connectivity and graph theory measures
    Al-Ezzi, Abdulhakim
    Kamel, Nidal
    Al-Shargabi, Amal A.
    Al-Shargie, Fares
    Al-Shargabi, Alaa
    Yahya, Norashikin
    Al-Hiyali, Mohammed Isam
    FRONTIERS IN PSYCHIATRY, 2023, 14
  • [2] Social Anxiety Disorder Evaluation using Effective Connectivity Measures: EEG Phase Slope Index Study
    Al-Ezzi, Abdulhakim
    Yahya, Norashikin
    Kamel, Nidal
    Faye, Ibrahima
    Alsaih, Khaled
    Gunaseli, Esther
    2020 IEEE-EMBS CONFERENCE ON BIOMEDICAL ENGINEERING AND SCIENCES (IECBES 2020): LEADING MODERN HEALTHCARE TECHNOLOGY ENHANCING WELLNESS, 2021, : 120 - 125
  • [3] Severity Assessment of Social Anxiety Disorder Using Deep Learning Models on Brain Effective Connectivity
    Al-Ezzi, Abdulhakim
    Yahya, Norashikin
    Kamel, Nidal
    Faye, Ibrahima
    Alsaih, Khaled
    Gunaseli, Esther
    IEEE Access, 2021, 9 : 86899 - 86913
  • [4] Severity Assessment of Social Anxiety Disorder Using Deep Learning Models on Brain Effective Connectivity
    Al-Ezzi, Abdulhakim
    Yahya, Norashikin
    Kamel, Nidal
    Faye, Ibrahima
    Alsaih, Khaled
    Gunaseli, Esther
    IEEE ACCESS, 2021, 9 : 86899 - 86913
  • [5] Feasibility of applying graph theory to diagnosing generalized anxiety disorder using machine learning models
    Jiang, Jiangling
    Li, Wei
    Cui, Huiru
    Zhu, Zhipei
    Zhang, Li
    Hu, Qiang
    Li, Hui
    Wang, Yiran
    Pang, Jiaoyan
    Wang, Jijun
    Li, Qingwei
    Li, Chunbo
    PSYCHIATRY RESEARCH-NEUROIMAGING, 2023, 333
  • [6] BotSward: Centrality Measures for Graph-Based Bot Detection Using Machine Learning
    Shinan, Khlood
    Alsubhi, Khalid
    Ashraf, M. Usman
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 74 (01): : 693 - 714
  • [7] A framework for seizure detection using effective connectivity, graph theory, and multi-level modular network
    Akbarian, Behnaz
    Erfanian, Abbas
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2020, 59
  • [8] Multiparametric MRI Characterization and Prediction in Autism Spectrum Disorder Using Graph Theory and Machine Learning
    Zhou, Yongxia
    Yu, Fang
    Duong, Timothy
    PLOS ONE, 2014, 9 (06):
  • [9] Using Graph Theory for Improving Machine Learning-based Detection of Cyber Attacks
    Zonneveld, Giacomo
    Principi, Lorenzo
    Baldi, Marco
    2024 IEEE 25TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE SWITCHING AND ROUTING, HPSR 2024, 2024, : 191 - 196
  • [10] Detection and Mathematical Modeling of Anxiety Disorder Based on Socioeconomic Factors Using Machine Learning Techniques
    Alsuwailem, Razan Ibrahim
    Bhatia, Surbhi
    HUMAN-CENTRIC COMPUTING AND INFORMATION SCIENCES, 2022, 12