Euler-MacLaurin Summation Formula on Polytopes and Expansions in Multivariate Bernoulli Polynomials

被引:0
|
作者
Brandolini, L. [1 ]
Colzani, L. [2 ]
Gariboldi, B. [1 ]
Gigante, G. [1 ]
Monguzzi, A. [1 ]
机构
[1] Univ Bergamo, Dipartimento Ingn Gest Informaz & Prod, Viale G Marconi 5, I-24044 Dalmine, BG, Italy
[2] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, Via R Cozzi 55, I-20125 Milan, Italy
关键词
Euler-MacLaurin summation formula; Bernoulli polynomials; Fourier transform; RIEMANN SUMS; POINTS;
D O I
10.1007/s00041-023-10011-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide a multidimensional weighted Euler-MacLaurin summation formula on polytopes and a multidimensional generalization of a result due to L. J. Mordell on the series expansion in Bernoulli polynomials. These results are consequences of a more general series expansion; namely, if ?t(P) denotes the characteristic function of a dilated integer convex polytope P and q is a function with suitable regularity, we prove that the periodization of q?P-t admits an expansion in terms of multivariate Bernoulli polynomials. These multivariate polynomials are related to the Lerch Zeta function. In order to prove our results we need to carefully study the asymptotic expansion of q?tP, the Fourier transform of q?tP.
引用
收藏
页数:49
相关论文
共 50 条