Smoothed tensor quantile regression estimation for longitudinal data

被引:3
|
作者
Ke, Baofang [1 ,2 ]
Zhao, Weihua [3 ]
Wang, Lei [1 ,2 ]
机构
[1] Nankai Univ, Sch Stat & Data Sci, Tianjin 300071, Peoples R China
[2] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[3] Nantong Univ, Sch Sci, Nantong 226019, Peoples R China
基金
中国国家自然科学基金;
关键词
Generalized estimating equations; Longitudinal data; Quantile regression; Tensor regression; CP decomposition; EMPIRICAL LIKELIHOOD; DECOMPOSITIONS; SELECTION;
D O I
10.1016/j.csda.2022.107609
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
As extensions of vector and matrix data with ultrahigh dimensionality and complex struc-tures, tensor data are fast emerging in a large variety of scientific applications. In this paper, a two-stage estimation procedure for linear tensor quantile regression (QR) with lon-gitudinal data is proposed. In the first stage, we account for within-subject correlations by using the generalized estimating equations and then impose a low-rank assumption on ten-sor coefficients to reduce the number of parameters by a canonical polyadic decomposition. To avoid the asymptotic analysis and computation problems caused by the non-smooth QR score function, kernel smoothing method is applied in the second stage to construct the smoothed tensor QR estimator. When the number of rank is given, a block-relaxation al-gorithm is proposed to estimate the regression coefficients. A modified BIC is applied to estimate the number of rank in practice and show the rank selection consistency. Further, a regularized estimator and its algorithm are investigated for better interpretation and ef-ficiency. The asymptotic properties of the proposed estimators are established. Simulation studies and a real example on Beijing Air Quality data set are provided to show the per-formance of the proposed estimators.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Nonlinear quantile regression estimation of longitudinal data
    Karlsson, Andreas
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2008, 37 (01) : 114 - 131
  • [2] Smoothed quantile regression for panel data
    Galvao, Antonio F.
    Kato, Kengo
    JOURNAL OF ECONOMETRICS, 2016, 193 (01) : 92 - 112
  • [3] Improving estimation efficiency in quantile regression with longitudinal data
    Tang, Yanlin
    Wang, Yinfeng
    Li, Jingru
    Qian, Weimin
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2015, 165 : 38 - 55
  • [4] Penalized weighted smoothed quantile regression for high-dimensional longitudinal data
    Song, Yanan
    Han, Haohui
    Fu, Liya
    Wang, Ting
    STATISTICS IN MEDICINE, 2024, 43 (10) : 2007 - 2042
  • [5] Quantile regression for longitudinal data
    Koenker, R
    JOURNAL OF MULTIVARIATE ANALYSIS, 2004, 91 (01) : 74 - 89
  • [6] Multiple quantile regression analysis of longitudinal data: Heteroscedasticity and efficient estimation
    Cho, Hyunkeun
    Kim, Seonjin
    Kim, Mi-Ok
    JOURNAL OF MULTIVARIATE ANALYSIS, 2017, 155 : 334 - 343
  • [7] Composite Quantile Regression Estimation for Left Censored Response Longitudinal Data
    Li-qun Xiao
    Zhan-feng Wang
    Yao-hua Wu
    Acta Mathematicae Applicatae Sinica, English Series, 2018, 34 : 730 - 741
  • [8] Efficient estimation in the partially linear quantile regression model for longitudinal data
    Kim, Seonjin
    Cho, Hyunkeun Ryan
    ELECTRONIC JOURNAL OF STATISTICS, 2018, 12 (01): : 824 - 850
  • [9] Composite Quantile Regression Estimation for Left Censored Response Longitudinal Data
    Xiao, Li-qun
    Wang, Zhan-feng
    Wu, Yao-hua
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2018, 34 (04): : 730 - 741
  • [10] Composite Quantile Regression Estimation for Left Censored Response Longitudinal Data
    Li-qun XIAO
    Zhan-feng WANG
    Yao-hua WU
    ActaMathematicaeApplicataeSinica, 2018, 34 (04) : 730 - 741