Atomistic insights into the binding of SARS-CoV-2 spike receptor binding domain with the human ACE2 receptor: The importance of residue 493

被引:6
|
作者
Carter, Camryn [1 ]
Airas, Justin [1 ,2 ]
Parish, Carol A. [1 ]
机构
[1] Univ Richmond, Gottwald Ctr Sci, Dept Chem, Richmond, VA 23173 USA
[2] MIT, Dept Chem, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
SARS-CoV-2; COVID-19; Omicron; Residue mutations; Spike protein; Receptor binding domain; Human ACE2 receptor; Molecular dynamics; MM-GBSA; MOLECULAR-DYNAMICS SIMULATIONS; FORCE-FIELD; VISUALIZATION; AMBER;
D O I
10.1016/j.jmgm.2022.108360
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
SARS-CoV-2 is a coronavirus that has created a global pandemic. The virus contains a spike protein which has been shown to bind to the ACE2 receptor on the surface of human cells. Vaccines have been developed that recognize elements of the SARS-CoV-2 spike protein and they have been successful in preventing infection. Recently, the Omicron variant of the SARS-CoV-2 virus was reported and quickly became a variant of concern due to its transmissibility. This variant contained an unusually large number (32) of point mutations, of which 15 of those mutations are in the receptor binding domain of the spike protein. While several computational and experimental investigations comparing the binding of the Omicron and wild type RBD to the human ACE2 re-ceptor have been conducted, many of these report contradictory findings. In order to assess the differential binding ability, we conducted 2 mu s of classical molecular dynamics (cMD) simulation to estimate the binding affinities and behaviors. Based upon MM-GBSA binding affinity, per-residue energy decomposition analysis, center of mass distance measurements, ensemble clustering, pairwise residue decomposition and hydrogen bonding analysis, our results suggest that a single point mutation is responsible for the enhanced binding of the Omicron mutant relative to the WT. While the 15-point mutations in the receptor binding domain contribute positively and negatively to the affinity of the spike protein for the human ACE2 receptor, it is the point mutation Q493R that confers enhanced binding while the Q493K mutation results in similar binding. The MM-GBSA binding estimations over a 2 mu s trajectory, suggest that the wild type binds to ACE2 with a value of -29.69 kcal/mol while the Q493K and Q493R Omicron mutants bind with energy values of-26.67 and -34.56 kcal/mol, respectively. These values are significantly different, given the error estimates associated with the MM-GBSA method. In general, while some mutations increase binding, more mutations diminish binding, leading to an overall similar picture of binding for Q493K and enhanced binding for Q493R.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor
    Lan, Jun
    Ge, Jiwan
    Yu, Jinfang
    Shan, Sisi
    Zhou, Huan
    Fan, Shilong
    Zhang, Qi
    Shi, Xuanling
    Wang, Qisheng
    Zhang, Linqi
    Wang, Xinquan
    NATURE, 2020, 581 (7807) : 215 - +
  • [2] Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor
    Jun Lan
    Jiwan Ge
    Jinfang Yu
    Sisi Shan
    Huan Zhou
    Shilong Fan
    Qi Zhang
    Xuanling Shi
    Qisheng Wang
    Linqi Zhang
    Xinquan Wang
    Nature, 2020, 581 : 215 - 220
  • [3] Binding of SARS-CoV-2/SARS-CoV spike protein with human ACE2 receptor
    Koirala, Rajendra P.
    Thapa, Bidhya
    Khanal, Shyam P.
    Powrel, Jhulan
    Adhikari, Rajendra P.
    Adhikari, Narayan P.
    JOURNAL OF PHYSICS COMMUNICATIONS, 2021, 5 (03):
  • [4] Correlating the differences in the receptor binding domain of SARS-CoV-2 spike variants on their interactions with human ACE2 receptor
    Gokulnath Mahalingam
    Porkizhi Arjunan
    Yogapriya Periyasami
    Ajay Kumar Dhyani
    Nivedita Devaraju
    Vignesh Rajendiran
    Abisha Crystal Christopher
    Ramya Devi KT
    Immanuel Dhanasingh
    Saravanabhavan Thangavel
    Mohankumar Murugesan
    Mahesh Moorthy
    Alok Srivastava
    Srujan Marepally
    Scientific Reports, 13
  • [5] Correlating the differences in the receptor binding domain of SARS-CoV-2 spike variants on their interactions with human ACE2 receptor
    Mahalingam, Gokulnath
    Arjunan, Porkizhi
    Periyasami, Yogapriya
    Dhyani, Ajay Kumar
    Devaraju, Nivedita
    Rajendiran, Vignesh
    Christopher, Abisha Crystal
    Devi, K. T. Ramya
    Dhanasingh, Immanuel
    Thangavel, Saravanabhavan
    Murugesan, Mohankumar
    Moorthy, Mahesh
    Srivastava, Alok
    Marepally, Srujan
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [6] Ivermectin Docks to the SARS-CoV-2 Spike Receptor-binding Domain Attached to ACE2
    Lehrer, Steven
    Rheinstein, Peter H.
    IN VIVO, 2020, 34 (05): : 3023 - 3026
  • [7] Heteromerization As a Mechanism Modulating the Affinity of the ACE2 Receptor to the Receptor Binding Domain of SARS-CoV-2 Spike Protein
    Guidolin, Diego
    Tortorella, Cinzia
    Anderlini, Deanna
    Marcoli, Manuela
    Maura, Guido
    Agnati, Luigi F.
    CURRENT PROTEOMICS, 2021, 18 (05) : 695 - 704
  • [8] Computational simulations reveal the binding dynamics between human ACE2 and the receptor binding domain of SARS-CoV-2 spike protein
    Cecylia SLupala
    Xuanxuan Li
    Jian Lei
    Hong Chen
    Jianxun Qi
    Haiguang Liu
    XiaoDong Su
    Quantitative Biology, 2021, 9 (01) : 61 - 72
  • [9] Computational simulations reveal the binding dynamics between human ACE2 and the receptor binding domain of SARS-CoV-2 spike protein
    Lupala, Cecylia S.
    Li, Xuanxuan
    Lei, Jian
    Chen, Hong
    Qi, Jianxun
    Liu, Haiguang
    Su, Xiao-Dong
    QUANTITATIVE BIOLOGY, 2021, 9 (01) : 61 - 72
  • [10] Structural insights into the binding of SARS-CoV-2, SARS-CoV, and hCoV-NL63 spike receptor-binding domain to horse ACE2
    Lan, Jun
    Chen, Peng
    Liu, Weiming
    Ren, Wenlin
    Zhang, Linqi
    Ding, Qiang
    Zhang, Qi
    Wang, Xinquan
    Ge, Jiwan
    STRUCTURE, 2022, 30 (10) : 1432 - +