3D-printed LEGO®-inspired titanium scaffolds for patient-specific regenerative medicine

被引:4
|
作者
Lee, Seunghun S. [1 ,3 ]
Du, Xiaoyu [1 ]
Smit, Thijs [1 ]
Bissacco, Elisa G. [1 ]
Seiler, Daniel [2 ]
de Wild, Michael [2 ]
Ferguson, Stephen J. [1 ]
机构
[1] Swiss Fed Inst Technol, Dept Hlth Sci & Technol, Inst Biomech, Zurich, Switzerland
[2] FHNW, Inst Med Engn & Med Informat IM 2, Muttenz, Switzerland
[3] Swiss Fed Inst Technol, Inst Biomech, Honggerbergring 64, HPP O24, CH-8093 Zurich, Switzerland
来源
BIOMATERIALS ADVANCES | 2023年 / 154卷
关键词
3D printing; Scaffold; Assembly; Patient-specific; Bone tissue engineering; IN-VIVO; CELL-DIFFERENTIATION; POROUS SCAFFOLDS; BONE; DELIVERY; DEFECTS;
D O I
10.1016/j.bioadv.2023.213617
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Despite the recent advances in 3D-printing, it is often difficult to fabricate implants that optimally fit a defect size or shape. There are some approaches to resolve this issue, such as patient-specific implant/scaffold designs based on CT images of the patients, however, this process is labor-intensive and costly. Especially in developing countries, affordable treatment options are required, while still not excluding these patient groups from potential material and manufacturing advances. Here, a selective laser melting (SLM) 3D-printing strategy was used to fabricate a hierarchical, LEGO & REG;-inspired Assemblable Titanium Scaffold (ATS) system, which can be manually assembled in any shape or size with ease. A surgeon can quickly create a scaffold that would fit to the defect right before the implantation during the surgery. Additionally, the direct inclusion of micro-and macroporous structures via 3D-printing, as well as a double acid-etched surface treatment (ST) in the ATS, ensure biocompatibility, sufficient nutrient flow, cell migration and enhanced osteogenesis. Three different structures were designed (non-porous:NP, semi-porous:SP, ultra-porous:UP), 3D-printed with the SLM technique and then surface treated for the ST groups. After analyzing characteristics of the ATS such as printing quality, surface roughness and interconnected porosity, mechanical testing and finite element analysis (FEA) demonstrated that individual and stacked ATS have sufficient mechanical properties to withstand loading in a physiological system. All ATS showed high cell viability, and the SP and UP groups demonstrated enhanced cell proliferation rates compared to the NP group. Furthermore, we also verified that cells were well-attached and spread on the porous structures and successful cell migration between the ATS units was seen in the case of assemblies. The UP and SP groups exhibited higher calcium deposition and RT-qPCR proved higher osteogenic gene expression compared to NP group. Finally, we demonstrate a number of possible medical applications that reveal the potential of the ATS through assembly.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] 3d Printing Of LEGO®-inspired Titanium Scaffold For Patient-specific Regenerative Medicine
    Lee, S. S.
    Du, X.
    Smit, T.
    Seiler, D.
    de Wild, M.
    Ferguson, S. J.
    TISSUE ENGINEERING PART A, 2022, 28 : 121 - 122
  • [2] Patient-specific 3D-printed glioblastomas
    Gomez-Roman, Natividad
    Chalmers, Anthony J.
    NATURE BIOMEDICAL ENGINEERING, 2019, 3 (07) : 498 - 499
  • [3] Patient-specific 3D-printed glioblastomas
    Natividad Gomez-Roman
    Anthony J. Chalmers
    Nature Biomedical Engineering, 2019, 3 : 498 - 499
  • [4] 3D-printed patient-specific applications in orthopedics
    Wong, Kwok Chuen
    ORTHOPEDIC RESEARCH AND REVIEWS, 2016, 8 : 57 - 66
  • [5] Reconstruction of Complex Maxillary Defects Using Patient-specific 3D-printed Biodegradable Scaffolds
    Han, Hyun Ho
    Shim, Jin-Hyung
    Lee, Hyungseok
    Kim, Bo Young
    Lee, Jeong-Seok
    Jung, Jin Woo
    Yun, Won-Soo
    Baek, Chung Hwan
    Rhie, Jong-Won
    Cho, Dong-Woo
    PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN, 2018, 6 (11)
  • [6] A 3D-printed, dynamic, patient-specific knee simulator
    Conconi, Michele
    Sancisi, Nicola
    Backus, Reid
    Argenti, Christian
    Shih, Albert J.
    RAPID PROTOTYPING JOURNAL, 2024, 30 (07) : 1380 - 1392
  • [7] 3D-printed Patient-specific Guides for Hip Arthroplasty
    Henckel, Johann
    Holme, Thomas J.
    Radford, Warwick
    Skinner, John A.
    Hart, Alister J.
    JOURNAL OF THE AMERICAN ACADEMY OF ORTHOPAEDIC SURGEONS, 2018, 26 (16) : E342 - E348
  • [8] Nipple Reconstruction: A Regenerative Medicine Approach Using 3D-Printed Tissue Scaffolds
    Khoo, Denver
    Ung, Owen
    Blomberger, Daniela
    Hutmacher, Dietmar W.
    TISSUE ENGINEERING PART B-REVIEWS, 2019, 25 (02) : 126 - 134
  • [9] Patient-specific 3D-printed implants and templates for elbow and forearm
    Cramer, Christopher
    Sperlich, Samuel
    Haettich, Annika
    Dust, Tobias
    Frosch, Karl-Heinz
    Mader, Konrad
    UNFALLCHIRURGIE, 2025,
  • [10] Patient-specific 3D-printed Splint for Mallet Finger Injury
    Zolfagharian, Ali
    Gregory, Timothy M.
    Bodaghi, Mahdi
    Gharaie, Saleh
    Fay, Pearse
    INTERNATIONAL JOURNAL OF BIOPRINTING, 2020, 6 (02) : 16 - 28