Properties of Coordinated (h1, h2)-Convex Functions of Two Variables Related to the Hermite-Hadamard-Fejer Type Inequalities

被引:1
|
作者
Latif, Muhammad Amer [1 ]
机构
[1] King Faisal Univ, Dept Basic Sci, Al Hufuf 31982, Saudi Arabia
关键词
coordinated convex function; coordinated; (h(1); h(2))-convex function; Hermite-Hadamard-Fejer type inequalities; CONVEX-FUNCTIONS; H(1))-(P(2); RECTANGLE; (P(1);
D O I
10.3390/math11051201
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove the Hermite-Hadamard-Fejer type inequalities for coordinated h(1),h(2)-convex functions on the rectangle from the plane R-2. Some generalizations of the Hermite-Hadamard-type inequalities of two variables are also obtained as a consequence. Some properties of two functionals which are connected with the coordinated h(1),h(2)-convex functions are provided as well. Finally, we give applications of the acquired results to special means of positive real numbers.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Properties of h-convex functions related to the Hermite-Hadamard-Fejer inequalities
    Bombardelli, Mea
    Varosanec, Sanja
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 58 (09) : 1869 - 1877
  • [2] ON SOME HERMITE-HADAMARD-FEJER INEQUALITIES FOR (k, h)-CONVEX FUNCTIONS
    Micherda, Bartosz
    Rajba, Teresa
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2012, 15 (04): : 931 - 940
  • [3] Hermite-Hadamard Type Inequalities for Interval (h1, h2)-Convex Functions
    An, Yanrong
    Ye, Guoju
    Zhao, Dafang
    Liu, Wei
    MATHEMATICS, 2019, 7 (05)
  • [4] Extended Hermite-Hadamard (H - H) and Fejer's inequalities based on (h1, h2, s)-convex functions
    Yasin, Sabir
    Misiran, Masnita
    Omar, Zurni
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (01): : 2885 - 2895
  • [5] Hermite-Hadamard-Fejer type inequalities for convex functions via fractional integrals
    Iscan, Imdat
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2015, 60 (03): : 355 - 366
  • [6] ON NEW HERMITE-HADAMARD-FEJER TYPE INEQUALITIES FOR HARMONICALLY QUASI CONVEX FUNCTIONS
    Turhan, Sercan
    Iscan, Imdat
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2019, 68 (01): : 734 - 749
  • [7] New Hermite-Hadamard-Fejer type inequalities for GA-convex functions
    Maden, Selahattin
    Turhan, Sercan
    Iscan, Imdat
    INTERNATIONAL CONFERENCE ON ADVANCES IN NATURAL AND APPLIED SCIENCES: ICANAS 2016, 2016, 1726
  • [8] On new inequalities of Hermite-Hadamard-Fejer type for convex functions via fractional integrals
    Set, Erhan
    Iscan, Imdat
    Sarikaya, M. Zeki
    Ozdemir, M. Emin
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 259 : 875 - 881
  • [9] New Hermite-Hadamard-Fejer type inequalities for (η1, η2)-convex functions via fractional calculus
    Mehmood, Sikander
    Zafar, Fiza
    Yasmin, Nusrat
    SCIENCEASIA, 2020, 46 (01): : 102 - 108
  • [10] On Quantum Hermite-Hadamard-Fejer Type Integral Inequalities via Uniformly Convex Functions
    Barsam, Hasan
    Mirzadeh, Somayeh
    Sayyari, Yamin
    Ciurdariu, Loredana
    FRACTAL AND FRACTIONAL, 2025, 9 (02)