A Novel Integrated Flow-Electrode Capacitive Deionization and Flow Cathode System for Nitrate Removal and Ammonia Generation from Simulated Groundwater

被引:30
|
作者
Sun, Jingyi [1 ]
Garg, Shikha [1 ]
Waite, T. David [1 ,2 ]
机构
[1] Univ New South Wales, UNSW Water Res Ctr, Sch Civil & Environm Engn, Sydney, NSW 2052, Australia
[2] UNSW Ctr Transformat Environm Technol, Yixing 214206, Jiangsu, Peoples R China
关键词
Integrated flow electrode cell; Hardness cations; Nitrate electroreduction; Ammonia; FCDI; WASTE-WATER; COPPER-OXIDE; REDUCTION; DESALINATION; OXIDATION; RECOVERY; NITROGEN; PHENOL;
D O I
10.1021/acs.est.3c03922
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Electrochemical reduction of nitrate is a promising method for the removal of nitrate from contaminated groundwater. However, the presence of hardness cations (Ca2+ and Mg2+) in groundwaters hampers the electroreduction of nitrate as a result of the precipitation of carbonate-containing solids of these elements on the cathode surface. Thus, some pretreatment process is required to remove unwanted hardness cations. Herein, we present a proof-of-concept of a novel three-chambered flow electrode unit, constituting a flow electrode capacitive deionization (FCDI) unit and a flow cathode (FC) unit, which achieves cation removal, nitrate capture and reduction, and ammonia generation in a single cell without the need for any additional chemicals/electrolyte. The addition of the FCDI unit not only achieves removal of hardness cations but also concentrates the nitrate ions and other anions, which facilitates nitrate reduction in the subsequent FC unit. Results show that the FCDI cell voltage influences electrode stability but has a minimal impact on the overall nitrate removal performance. The concentration of coexisting anions influences the nitrate removal due to competitive sorption of anions on the electrode surface. Our results further show that stable electrochemical performance was obtained over 26 h of operation. Overall, this study provides a scalable strategy for continuous nitrate electroreduction and ammonia generation from nitrate contaminated groundwaters containing hardness ions.
引用
收藏
页码:14726 / 14736
页数:11
相关论文
共 50 条
  • [1] Enhanced nitrate removal from groundwater using a conductive spacer in flow-electrode capacitive deionization
    Guo, Hongjie
    Wei, Qiang
    Wu, Yangyang
    Qiu, Wei
    Li, Hongliang
    Zhang, Changyong
    CHINESE CHEMICAL LETTERS, 2024, 35 (08)
  • [2] Enhanced nitrate removal from groundwater using a conductive spacer in flow-electrode capacitive deionization
    Hongjie Guo
    Qiang Wei
    Yangyang Wu
    Wei Qiu
    Hongliang Li
    Changyong Zhang
    ChineseChemicalLetters, 2024, 35 (08) : 406 - 409
  • [3] The impact of concentration in electrolyte on ammonia removal in flow-electrode capacitive deionization system
    Fang, Kuo
    Peng, Fei
    San, Erfu
    Wang, Kaijun
    SEPARATION AND PURIFICATION TECHNOLOGY, 2021, 255
  • [4] Recovering ammonia from municipal wastewater by flow-electrode capacitive deionization
    Fang, Kuo
    Gong, Hui
    He, Wenyan
    Peng, Fei
    He, Conghui
    Wang, Kaijun
    CHEMICAL ENGINEERING JOURNAL, 2018, 348 : 301 - 309
  • [5] Enhanced capacitive deionization using a biochar-integrated novel flow-electrode
    Lim, Jihun
    Shin, Yong-Uk
    Hong, Seungkwan
    DESALINATION, 2022, 528
  • [6] Energy recovery from the flow-electrode capacitive deionization
    Ma, Junjun
    Liang, Peng
    Sun, Xueliang
    Zhang, Helan
    Bian, Yanhong
    Yang, Fan
    Bai, Junfei
    Gong, Qianming
    Huang, Xia
    JOURNAL OF POWER SOURCES, 2019, 421 : 50 - 55
  • [7] Evaluating the performance of flow-electrode capacitive deionization for cadmium removal from aqueous solution
    Gong, Weijia
    Yang, Ya
    Chang, Haiqing
    Wang, Tianyu
    Liang, Heng
    JOURNAL OF WATER PROCESS ENGINEERING, 2022, 46
  • [8] Simultaneous removal of tetracycline and copper ions from wastewater by flow-electrode capacitive deionization
    Tong, Peipei
    Hang, Zhenyu
    Zhu, Weihuang
    Li, Zhihua
    ENVIRONMENTAL TECHNOLOGY, 2024, 45 (26) : 5581 - 5588
  • [9] Sustainable approach for selective lithium recovery: Capacitive deionization integrated with novel LMO flow-electrode
    Lee, Hyuncheal
    Lim, Jihun
    Lee, Hayoung
    Hong, Seungkwan
    DESALINATION, 2025, 593
  • [10] Towards pilot scale flow-electrode capacitive deionization
    Koeller, Niklas
    Mankertz, Lukas
    Finger, Selina
    Linnartz, Christian J.
    Wessling, Matthias
    DESALINATION, 2024, 572