The Anomaly Detector, Semi-supervised Classifier, and Supervised Classifier Based on K-Nearest Neighbors in Geochemical Anomaly Detection: A Comparative Study

被引:8
|
作者
Chen, Yongliang [1 ]
Lu, Laijun [1 ]
机构
[1] Jilin Univ, Coll Earth Sci, Changchun 130061, Jilin, Peoples R China
基金
中国国家自然科学基金;
关键词
K-nearest neighbor; Supervised classification; Semi-supervised classification; Geochemical anomaly detection; Polymetallic mineral deposits; RECOGNITION;
D O I
10.1007/s11004-022-10042-w
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Unsupervised anomaly detection techniques mainly model the population distribution of geochemical exploration data, but do not consider the mineral deposit information found in the study area. Supervised classification techniques can make full use of mineral deposit information to distinguish geochemical anomalies from the background. However, these classification techniques usually cannot properly address the data imbalance in distinguishing geochemical anomalies from the background. The data imbalance of geochemical exploration data means that there are only a few known mineralized data points in the study area and a large number of data points to be evaluated. Semi-supervised classification techniques are machine learning algorithms developed to solve the classification problem of a small amount of labeled data and a large amount of unlabeled data. These techniques are suitable for dealing with classification problems such as identifying anomalies from geochemical exploration data. Therefore, in this study, the K-nearest neighbor (KNN) algorithm, an effective machine learning technique for constructing anomaly detection models, semi-supervised classification models, and supervised classification models, was adopted to construct the anomaly detection model, semi-supervised classification model, and supervised classification model for detecting polymetallic anomalies in the case study in the Baishan area (China). The stream sediment survey data collected from the four 1:200,000 geological maps and the 30 polymetallic deposits found in the study area were used to train the KNN-based models for detecting polymetallic anomalies. The receiver operating characteristic (ROC) curve and the area under the ROC curve (AUC) were adopted to compare the performance of the KNN-based models in detecting polymetallic anomalies. The results show that the KNN-based semi-supervised and supervised classification models have similar performance in detecting polymetallic anomalies, and are superior to the KNN-based anomaly detection model. Therefore, as long as the training dataset is defined according to the known deposits in the study area, the KNN-based semi-supervised classification model and supervised classification model are potentially effective methods for detecting mineralization-related geochemical anomalies.
引用
收藏
页码:1011 / 1033
页数:23
相关论文
共 50 条
  • [1] The Anomaly Detector, Semi-supervised Classifier, and Supervised Classifier Based on K-Nearest Neighbors in Geochemical Anomaly Detection: A Comparative Study
    Yongliang Chen
    Laijun Lu
    Mathematical Geosciences, 2023, 55 : 1011 - 1033
  • [2] Semi-Supervised Multi-label k-Nearest Neighbors Classification Algorithms
    de Lucena, Danilo C. G.
    Prudencio, Ricardo B. C.
    2015 BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS 2015), 2015, : 49 - 54
  • [3] Network anomaly detection based on semi-supervised clustering
    Wei Xiaotao
    Huang Houkuan
    Tian Shengfeng
    NEW ADVANCES IN SIMULATION, MODELLING AND OPTIMIZATION (SMO '07), 2007, : 440 - +
  • [4] Semi-Supervised Anomaly Detection with Contrastive Regularization
    Jezequel, Loic
    Vu, Ngoc-Son
    Beaudet, Jean
    Histace, Aymeric
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 2664 - 2671
  • [5] Semi-supervised Anomaly Detection with Reinforcement Learning
    Lee, Changheon
    Kim, JoonKyu
    Kang, Suk-Ju
    2022 37TH INTERNATIONAL TECHNICAL CONFERENCE ON CIRCUITS/SYSTEMS, COMPUTERS AND COMMUNICATIONS (ITC-CSCC 2022), 2022, : 933 - 936
  • [6] Semi-supervised Anomaly Detection on Attributed Graphs
    Kumagai, Atsutoshi
    Iwata, Tomoharu
    Fujiwara, Yasuhiro
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [7] An Efficient Semi-Supervised SVM for Anomaly Detection
    Kim, Junae
    Montague, Paul
    2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 2843 - 2850
  • [8] Semi-Supervised Isolation Forest for Anomaly Detection
    Stradiotti, Luca
    Perini, Lorenzo
    Davis, Jesse
    PROCEEDINGS OF THE 2024 SIAM INTERNATIONAL CONFERENCE ON DATA MINING, SDM, 2024, : 670 - 678
  • [9] Markov chain based semi-supervised classifier
    Wang, Zhang-Qi
    Cao, Qu-Jiang
    Shanghai Ligong Daxue Xuebao/Journal of University of Shanghai for Science and Technology, 2007, 29 (01): : 51 - 54
  • [10] Bayesian label distribution propagation: A semi-supervised probabilistic k nearest neighbor classifier
    Gottcke, Jonatan M. N.
    Zimek, Arthur
    Campello, Ricardo J. G. B.
    INFORMATION SYSTEMS, 2025, 129