Causal Discovery and Optimal Experimental Design for Genome-Scale Biological Network Recovery

被引:1
|
作者
Shah, Ashka [1 ,2 ]
Hayot-Sasson, Valerie [1 ,2 ]
Ramanathan, Arvind [1 ,2 ]
Stevens, Rick [1 ,2 ]
机构
[1] Univ Chicago, Chicago, IL 60637 USA
[2] Argonne Natl Lab, Lemont, IL 60439 USA
关键词
causality; structure learning; optimal experimental design; genotype-phenotype mapping; MARKOV EQUIVALENCE CLASSES;
D O I
10.1145/3592979.3593400
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Causal discovery of genome-scale networks is important for identifying pathways from genes to observable traits - e.g. differences in cell function, disease, drug resistance and others. Causal learners based on graphical models rely on interventional samples to orient edges in the network. However, these models have not been shown to scale up the size of the genome, which is on the order of 10(3)-10(4) genes. We introduce a new learner, SP-GIES, that jointly learns from interventional and observational datasets and achieves almost 4x speedup against an existing learner for 1,000 node networks. SP-GIES achieves an AUC-PR score of 0.91 on 1,000 node networks, and scales up to 2,000 node networks - this is 4x larger than existing works. We also show how SP-GIES improves downstream optimal experimental design strategies for selecting interventional experiments to perform on the system. This is an important step forward in realizing causal discovery at scale via autonomous experimental design.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Genome-scale metabolic models as platforms for strain design and biological discovery
    Mienda, Bashir Sajo
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2017, 35 (09): : 1863 - 1873
  • [2] Network inference and network response identification: moving genome-scale data to the next level of biological discovery
    Veiga, Diogo F. T.
    Dutta, Bhaskar
    Balazsi, Gabor
    MOLECULAR BIOSYSTEMS, 2010, 6 (03) : 469 - 480
  • [3] Optimal Rates for Phylogenetic Inference and Experimental Design in the Era of Genome-Scale Data Sets
    Dornburg, Alex
    Su, Zhuo
    Townsend, Jeffrey P.
    SYSTEMATIC BIOLOGY, 2019, 68 (01) : 145 - 156
  • [4] Optimizing genome-scale network reconstructions
    Monk, Jonathan
    Nogales, Juan
    Palsson, Bernhard O.
    NATURE BIOTECHNOLOGY, 2014, 32 (05) : 447 - 452
  • [5] Optimizing genome-scale network reconstructions
    Jonathan Monk
    Juan Nogales
    Bernhard O Palsson
    Nature Biotechnology, 2014, 32 : 447 - 452
  • [6] The feasibility of genome-scale biological network inference using Graphics Processing Units
    Thiagarajan, Raghuram
    Alavi, Amir
    Podichetty, Jagdeep T.
    Bazil, Jason N.
    Beard, Daniel A.
    ALGORITHMS FOR MOLECULAR BIOLOGY, 2017, 12
  • [7] The feasibility of genome-scale biological network inference using Graphics Processing Units
    Raghuram Thiagarajan
    Amir Alavi
    Jagdeep T. Podichetty
    Jason N. Bazil
    Daniel A. Beard
    Algorithms for Molecular Biology, 12
  • [8] Guidelines for Genome-Scale Analysis of Biological Rhythms
    Hughes, Michael E.
    Abruzzi, Katherine C.
    Allada, Ravi
    Anafi, Ron
    Arpat, Alaaddin Bulak
    Asher, Gad
    Baldi, Pierre
    de Bekker, Charissa
    Bell-Pedersen, Deborah
    Blau, Justin
    Brown, Steve
    Ceriani, M. Fernanda
    Chen, Zheng
    Chiu, Joanna C.
    Cox, Juergen
    Crowell, Alexander M.
    DeBruyne, Jason P.
    Dijk, Derk-Jan
    DiTacchio, Luciano
    Doyle, Francis J.
    Duffield, Giles E.
    Dunlap, Jay C.
    Eckel-Mahan, Kristin
    Esser, Karyn A.
    FitzGerald, Garret A.
    Forger, Daniel B.
    Francey, Lauren J.
    Fu, Ying-Hui
    Gachon, Frederic
    Gatfield, David
    de Goede, Paul
    Golden, Susan S.
    Green, Carla
    Harer, John
    Harmer, Stacey
    Haspel, Jeff
    Hastings, Michael H.
    Herzel, Hanspeter
    Herzog, Erik D.
    Hoffmann, Christy
    Hong, Christian
    Hughey, Jacob J.
    Hurley, Jennifer M.
    de la Iglesia, Horacio O.
    Johnson, Carl
    Kay, Steve A.
    Koike, Nobuya
    Kornacker, Karl
    Kramer, Achim
    Lamia, Katja
    JOURNAL OF BIOLOGICAL RHYTHMS, 2017, 32 (05) : 380 - 393
  • [9] Genome-scale biological models for industrial microbial systems
    Nan Xu
    Chao Ye
    Liming Liu
    Applied Microbiology and Biotechnology, 2018, 102 : 3439 - 3451
  • [10] Using Genome-scale Models to Predict Biological Capabilities
    O'Brien, Edward J.
    Monk, Jonathan M.
    Palsson, Bernhard O.
    CELL, 2015, 161 (05) : 971 - 987