Reservoir automatic history matching: Methods, challenges, and future directions

被引:17
|
作者
Liu, Piyang [1 ]
Zhang, Kai [1 ,2 ]
Yao, Jun [2 ]
机构
[1] Qingdao Univ Technol, Sch Civil Engn, Qingdao 266520, Peoples R China
[2] China Univ Petr East China, Sch Petr Engn, Qingdao 266580, Peoples R China
来源
ADVANCES IN GEO-ENERGY RESEARCH | 2023年 / 7卷 / 02期
基金
中国国家自然科学基金;
关键词
History matching; optimization algorithm; surrogate model; data-driven; MODEL; ALGORITHM; FLOW; FRAMEWORK;
D O I
10.46690/ager.2023.02.07
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Reservoir history matching refers to the process of continuously adjusting the parameters of the reservoir model, so that its dynamic response will match the historical observation data, which is a prerequisite for making forecasts based on the reservoir model. With the development of optimization theory and machine learning algorithms, automatic history matching has made numerous breakthroughs for practical applications. In this perspective, the existing automatic history matching methods are summarized and divided into model-driven and surrogate-driven history matching methods according to whether the reservoir simulator needs to be run during the automatic history matching process. Then, the basic principles of these methods and their limitations in practical applications are outlined. Finally, the future trends of reservoir automatic history matching are discussed.
引用
收藏
页码:136 / 140
页数:5
相关论文
共 50 条
  • [1] Automatic music transcription: challenges and future directions
    Emmanouil Benetos
    Simon Dixon
    Dimitrios Giannoulis
    Holger Kirchhoff
    Anssi Klapuri
    Journal of Intelligent Information Systems, 2013, 41 : 407 - 434
  • [2] Automatic music transcription: challenges and future directions
    Benetos, Emmanouil
    Dixon, Simon
    Giannoulis, Dimitrios
    Kirchhoff, Holger
    Klapuri, Anssi
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2013, 41 (03) : 407 - 434
  • [3] A Comparison Study on Algorithms in Reservoir Automatic History Matching
    Jiang, Baoyi
    Li, Zhiping
    ADVANCES IN ENVIRONMENTAL SCIENCE AND ENGINEERING, PTS 1-6, 2012, 518-523 : 4376 - 4379
  • [4] Federated Learning: Challenges, Methods, and Future Directions
    Li, Tian
    Sahu, Anit Kumar
    Talwalkar, Ameet
    Smith, Virginia
    IEEE SIGNAL PROCESSING MAGAZINE, 2020, 37 (03) : 50 - 60
  • [5] NONLINEAR AUTOMATIC HISTORY MATCHING TECHNIQUE FOR RESERVOIR SIMULATION MODELS
    THOMAS, LK
    HELLUMS, LJ
    SOCIETY OF PETROLEUM ENGINEERS JOURNAL, 1972, 12 (06): : 508 - 514
  • [6] IMPROVED RESERVOIR CHARACTERIZATION USING AUTOMATIC HISTORY MATCHING PROCEDURES
    TAN, TB
    KALOGERAKIS, N
    JOURNAL OF CANADIAN PETROLEUM TECHNOLOGY, 1993, 32 (06): : 26 - 33
  • [7] Efficient Dimensionality Reduction Methods in Reservoir History Matching
    Tadjer, Amine
    Bratvold, Reider B.
    Hanea, Remus G.
    ENERGIES, 2021, 14 (11)
  • [8] Teaching the history of geography: Current challenges and future directions
    Keighren, Innes M.
    Crampton, Jeremy W.
    Ginn, Franklin
    Kirsch, Scott
    Kobayashi, Audrey
    Naylor, Simon N.
    Seemann, Jorn
    PROGRESS IN HUMAN GEOGRAPHY, 2017, 41 (02) : 245 - 262
  • [9] Mesothelial cell transplantation: history, challenges and future directions
    Kawanishi, Kunio
    PLEURA AND PERITONEUM, 2016, 1 (03) : 135 - 143
  • [10] Image Segmentation Methods: Overview, Challenges, and Future Directions
    Al Garea, Salwa
    Das, Saptarshi
    PROCEEDINGS 2024 SEVENTH INTERNATIONAL WOMEN IN DATA SCIENCE CONFERENCE AT PRINCE SULTAN UNIVERSITY, WIDS-PSU 2024, 2024, : 56 - 61