Electrical parameters extraction of PV modules using artificial hummingbird optimizer

被引:24
|
作者
El-Sehiemy, Ragab [1 ]
Shaheen, Abdullah [2 ]
El-Fergany, Attia [3 ]
Ginidi, Ahmed [2 ]
机构
[1] Kafrelsheikh Univ, Fac Engn, Dept Elect Engn, Kafrelsheikh 33516, Egypt
[2] Suez Univ, Fac Engn, Dept Elect Engn, Suez 43533, Egypt
[3] Zagazig Univ, Fac Engn, Elect Power & Machines Dept, Zagazig 44519, Egypt
关键词
HEAP-BASED OPTIMIZER; SOLAR-CELL MODELS; PHOTOVOLTAIC CELL; DIFFERENTIAL EVOLUTION; SEARCH ALGORITHM; JAYA ALGORITHM; DIODE MODEL; IDENTIFICATION;
D O I
10.1038/s41598-023-36284-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The parameter extraction of PV models is a nonlinear and multi-model optimization problem. However, it is essential to correctly estimate the parameters of the PV units due to their impact on the PV system efficiency in terms of power and current production. As a result, this study introduces a developed Artificial Hummingbird Technique (AHT) to generate the best values of the ungiven parameters of these PV units. The AHT mimics hummingbirds' unique flying abilities and foraging methods in the wild. The AHT is compared with numerous recent inspired techniques which are tuna swarm optimizer, African vulture's optimizer, teaching learning studying-based optimizer and other recent optimization techniques. The statistical studies and experimental findings show that AHT outperforms other methods in extracting the parameters of various PV models of STM6-40/36, KC200GT and PWP 201 polycrystalline. The AHT's performance is evaluated using the datasheet provided by the manufacturer. To highlight the AHT dominance, its performance is compared to those of other competing techniques. The simulation outcomes demonstrate that the AHT algorithm features a quick processing time and steadily convergence in consort with keeping an elevated level of accuracy in the offered solution.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Electrical parameters extraction of PV modules using artificial hummingbird optimizer
    Ragab El-Sehiemy
    Abdullah Shaheen
    Attia El-Fergany
    Ahmed Ginidi
    Scientific Reports, 13
  • [2] Estimation of electrical transformer parameters with reference to saturation behavior using artificial hummingbird optimizer
    Kotb, Mohamed F.
    El-Fergany, Attia A.
    Gouda, Eid A.
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [3] Estimation of electrical transformer parameters with reference to saturation behavior using artificial hummingbird optimizer
    Mohamed F. Kotb
    Attia A. El-Fergany
    Eid A. Gouda
    Scientific Reports, 12
  • [4] Extraction of Unknown Parameters of PV Modules
    Hussein, Ahmed M.
    2017 9TH IEEE-GCC CONFERENCE AND EXHIBITION (GCCCE), 2018, : 361 - 366
  • [5] DC Power Optimizer for PV Modules Using SEPIC Converter
    Azab, Mohamed
    2017 5TH IEEE INTERNATIONAL CONFERENCE ON SMART ENERGY GRID ENGINEERING (SEGE), 2017, : 74 - 78
  • [6] Extraction of the PV modules parameters with MPP estimation using the modified flower algorithm
    Benkercha, Rabah
    Moulahoum, Samir
    Taghezouit, Bilal
    RENEWABLE ENERGY, 2019, 143 : 1698 - 1709
  • [7] Representations of solar photovoltaic triple-diode models using artificial hummingbird optimizer
    Shaheen, Abdullah
    El-Sehiemy, Ragab
    El-Fergany, Attia
    Ginidi, Ahmed
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2022, 44 (04) : 8787 - 8810
  • [8] Electrical characterization of photovoltaic modules using farmland fertility optimizer
    Agwa, Ahmed M.
    El-Fergany, Attia A.
    Maksoud, Hady A.
    ENERGY CONVERSION AND MANAGEMENT, 2020, 217
  • [9] SPOAHA: Spark Program Optimizer Based on Artificial Hummingbird Algorithm
    Wang, Miao
    Zhen, Jiteng
    Ma, Yupeng
    Huang, Xu
    Zhang, Hong
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT III, KSEM 2023, 2023, 14119 : 317 - 331
  • [10] Accurate method for PV solar cells and modules parameters extraction using I–V curves
    Abdulrazzaq A.K.
    Bognár G.
    Plesz B.
    Journal of King Saud University - Engineering Sciences, 2022, 34 (01) : 46 - 56