Statistical Inference for Self-Exciting Threshold INAR Processes with Missing Values

被引:3
|
作者
Yan, Han [1 ]
Wang, Dehui [2 ]
机构
[1] Jilin Univ, Coll Math, Changchun 130012, Peoples R China
[2] Liaoning Univ, Coll Econ, Shenyang 110036, Peoples R China
基金
中国国家自然科学基金;
关键词
SETINAR process; Integer-valued threshold models; Missing data; Imputation; MODELS;
D O I
10.1007/s40304-021-00275-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The time series model with threshold characteristics under fully observations has been explored intensively in recent years. In this article, several methods are proposed to estimate the parameters of the self-exciting threshold integer-valued autoregressive (SETINAR(2,1)) process in the presence of completely random missing data. In order to dispose of the non-equidistance in the observed data, we research the conditional least squares and conditional maximum likelihood inference based on the p-step-ahead conditional distribution of incomplete observations; in addition, three kinds of imputation methods are investigated to deal with the missing values for estimating the parameters of interest. Multiple groups of stochastic simulation studies are carried out to compare the proposed approaches.
引用
收藏
页码:795 / 814
页数:20
相关论文
共 50 条
  • [1] Statistical Inference for Self-Exciting Threshold INAR Processes with Missing Values
    Han Yan
    Dehui Wang
    Communications in Mathematics and Statistics, 2023, 11 : 795 - 814
  • [2] Efficient estimation in semiparametric self-exciting threshold INAR processes
    Bentarzi, Mohamed
    Sadoun, Mohamed
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (06) : 2592 - 2614
  • [3] Statistical Inference for Periodic Self-Exciting Threshold Integer-Valued Autoregressive Processes
    Liu, Congmin
    Cheng, Jianhua
    Wang, Dehui
    ENTROPY, 2021, 23 (06)
  • [4] Self-exciting threshold binomial autoregressive processes
    Tobias A. Möller
    Maria Eduarda Silva
    Christian H. Weiß
    Manuel G. Scotto
    Isabel Pereira
    AStA Advances in Statistical Analysis, 2016, 100 : 369 - 400
  • [5] Self-exciting threshold binomial autoregressive processes
    Moeller, Tobias A.
    Silva, Maria Eduarda
    Weiss, Christian H.
    Scotto, Manuel G.
    Pereira, Isabel
    ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2016, 100 (04) : 369 - 400
  • [6] THE STATISTICAL ANALYSIS OF SELF-EXCITING POINT PROCESSES
    Kopperschmidt, Kai
    Stute, Winfried
    STATISTICA SINICA, 2013, 23 (03) : 1273 - 1298
  • [7] Statistical inference for the doubly stochastic self-exciting process
    Clinet, Simon
    Potiron, Yoann
    BERNOULLI, 2018, 24 (4B) : 3469 - 3493
  • [8] Quasi-likelihood inference for self-exciting threshold integer-valued autoregressive processes
    Li, Han
    Yang, Kai
    Wang, Dehui
    COMPUTATIONAL STATISTICS, 2017, 32 (04) : 1597 - 1620
  • [9] Quasi-likelihood inference for self-exciting threshold integer-valued autoregressive processes
    Han Li
    Kai Yang
    Dehui Wang
    Computational Statistics, 2017, 32 : 1597 - 1620
  • [10] Integer-Valued Self-Exciting Threshold Autoregressive Processes
    Monteiro, Magda
    Scotto, Manuel G.
    Pereira, Isabel
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2012, 41 (15) : 2717 - 2737