Artificial Neural Networking Magnification for Heat Transfer Coefficient in Convective Non-Newtonian Fluid with Thermal Radiations and Heat Generation Effects

被引:9
|
作者
Rehman, Khalil Ur [1 ,2 ]
Shatanawi, Wasfi [1 ,3 ]
Colak, Andac Batur [4 ]
机构
[1] Prince Sultan Univ, Coll Humanities & Sci, Dept Math & Sci, Riyadh 11586, Saudi Arabia
[2] Air Univ, Dept Math, PAF Complex E9, Islamabad 44000, Pakistan
[3] Hashemite Univ, Fac Sci, Dept Math, POB 330127, Zarqa 13133, Jordan
[4] Istanbul Commerce Univ, Informat Technol Applicat & Res Ctr, TR-34445 Istanbul, Turkiye
关键词
thermal energy; mixed convection; thermal radiation; nusselt number; artificial neural networking; casson fluid; STAGNATION-POINT FLOW; CASSON FLUID;
D O I
10.3390/math11020342
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this study, the Casson fluid flow through an inclined, stretching cylindrical surface is considered. The flow field is manifested with pertinent physical effects, namely heat generation, viscous dissipation, thermal radiations, stagnation point flow, variable thermal conductivity, a magnetic field, and mixed convection. In addition, the flow field is formulated mathematically. The shooting scheme is used to obtain the numerical data of the heat transfer coefficient at the cylindrical surface. Further, for comparative analysis, three different thermal flow regimes are considered. In order to obtain a better estimation of the heat transfer coefficient, three corresponding artificial neural networks (ANN) models were constructed by utilizing Tan-Sig and Purelin transfer functions. It was observed that the heat transfer rate exhibits an inciting nature for the Eckert and Prandtl numbers, curvature, and heat generation parameters, while the Casson fluid parameter, temperature-dependent thermal conductivity, and radiation parameter behave oppositely. The present ANN estimation will be helpful for studies related to thermal energy storage that have Nusselt number involvements.
引用
收藏
页数:29
相关论文
共 50 条