Electrospun biodegradable scaffolds based on poly (ε-caprolactone)/gelatin containing titanium dioxide for bone tissue engineering application; in vitro study

被引:2
|
作者
Mohammadi, Seyedeh Shima [1 ]
Shafiei, Seyedeh Sara [1 ]
机构
[1] Natl Inst Genet Engn & Biotechnol, Inst Med Biotechnol, Stem Cell & Regenerat Med Dept, Tehran, Iran
关键词
Tissue engineering; TiO2; nanoparticles; electrospinning; scaffold; mesenchymal stem cell; NANOCOMPOSITE SCAFFOLDS; COMPOSITE SCAFFOLDS; TIO2;
D O I
10.1080/10601325.2023.2193582
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
In this study, Poly (epsilon-caprolactone) (PCL)/Gelatin/TiO2 nanofibrous scaffolds were prepared using electrospinning. The effects of TiO2 nanoparticles (NPs) addition on morphology, mechanical, chemical, thermal, and cellular behavior, and antibacterial properties of PCL/gelatin scaffolds were investigated. Different amounts of TiO2 NPs (0.06, 0.6, and 1 w/v %) were incorporated into the polymer blend to form a homogenous nanocomposite solution. The experimental results exhibited that the hydrophilicity of the scaffolds was improved by incorporating TiO2 NPs, as shown by the water contact angle measurement. Also, the mechanical and thermal behaviors of fabricated scaffolds were enhanced. Moreover, Human bone marrow-derived mesenchymal stem cells (hMSC) were used to investigate the bioactivity and biocompatibility of scaffolds. The MTT assay results showed no toxicity effect for scaffolds. However, releasing reactive oxygen at the highest concentration of TiO2 was remarkably increased, resulting in cell toxicity. Hybridizing biopolymer with TiO2 nanoparticles improves its bone regeneration capability. Thereby, incorporating an optimum amount of TiO2 NPs into PCL/Gelatin composites could be a promising approach for bone tissue engineering applications.
引用
收藏
页码:270 / 281
页数:12
相关论文
共 50 条
  • [1] Electrospun poly(ε-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering
    Ghasemi-Mobarakeh, Laleh
    Prabhakaran, Molamma P.
    Morshed, Mohammad
    Nasr-Esfahani, Mohammad-Hossein
    Ramakrishna, Seeram
    BIOMATERIALS, 2008, 29 (34) : 4532 - 4539
  • [2] In vitro mineralization of hydroxyapatite on electrospun poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) fibrous scaffolds for tissue engineering application
    Fu, ShaoZhi
    Yang, LingLin
    Fan, Juan
    Wen, QingLian
    Lin, Sheng
    Wang, BiQiong
    Chen, LanLan
    Meng, XiaoHang
    Chen, Yue
    Wu, JingBo
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2013, 107 : 167 - 173
  • [3] Coating Electrospun Poly(ε-caprolactone) Fibers with Gelatin and Calcium Phosphate and Their Use as Biomimetic Scaffolds for Bone Tissue Engineering
    Li, Xiaoran
    Xie, Jingwei
    Yuan, Xiaoyan
    Xia, Younan
    LANGMUIR, 2008, 24 (24) : 14145 - 14150
  • [4] ELECTROSPUN POLY (E- CAPROLACTONE)/TIO2 NANOCOMPOSITE SCAFFOLDS FOR BONE TISSUE ENGINEERING APPLICATION; IN-VITRO STUDY
    Mohammadi, Seyedeh Shima
    Shafiei, Seyedeh Sara
    TISSUE ENGINEERING PART A, 2022, 28 : S300 - S301
  • [5] Electrospun bioactive composite scaffolds of hydroxyapatite/poly(ε-caprolactone) for bone tissue engineering
    Li Lingli
    Li Guang
    Jiang Jianming
    PROCEEDINGS OF 2009 INTERNATIONAL CONFERENCE ON ADVANCED FIBERS AND POLYMER MATERIALS, VOLS 1 AND 2, 2009, : 1291 - 1294
  • [6] Advances in Electrospun Poly(ε-caprolactone)-Based Nanofibrous Scaffolds for Tissue Engineering
    Robles, Karla N.
    Zahra, Fatima tuz
    Mu, Richard
    Giorgio, Todd
    POLYMERS, 2024, 16 (20)
  • [7] Poly(caprolactone) based magnetic scaffolds for bone tissue engineering
    Banobre-Lopez, M.
    Pineiro-Redondo, Y.
    De Santis, R.
    Gloria, A.
    Ambrosio, L.
    Tampieri, A.
    Dediu, V.
    Rivas, J.
    JOURNAL OF APPLIED PHYSICS, 2011, 109 (07)
  • [8] Electrospun poly(ε-caprolactone)-gelatin mats for tissue engineering scaffolding
    Bianco, A.
    Del Gaudio, C.
    Cacciotti, I.
    JOURNAL OF APPLIED BIOMATERIALS & BIOMECHANICS, 2009, 7 (01) : 55 - 55
  • [9] Electrospun biodegradable nanofibers scaffolds for bone tissue engineering
    Khajavi, Ramin
    Abbasipour, Mina
    Bahador, Abbas
    JOURNAL OF APPLIED POLYMER SCIENCE, 2016, 133 (03)
  • [10] Biomimetic calcium phosphate coating on electrospun poly (ε-caprolactone) scaffolds for bone tissue engineering
    Yang, F.
    Wolke, J. G. C.
    Jansen, J. A.
    CHEMICAL ENGINEERING JOURNAL, 2008, 137 (01) : 154 - 161