Fractional version of Ostrowski-type inequalities for strongly p-convex stochastic processes via a k-fractional Hilfer-Katugampola derivative

被引:3
|
作者
Qi, Hengxiao [1 ,2 ]
Saleem, Muhammad Shoaib [3 ]
Ahmed, Imran [4 ]
Sajid, Sana [3 ]
Nazeer, Waqas [5 ]
机构
[1] Shandong Adm Coll, Party Sch Shandong Prov Comm Communist Party China, Jinan 250014, Peoples R China
[2] Res Ctr Theoret Syst Socialism Chinese Characteris, Jinan 250014, Peoples R China
[3] Univ Okara, Dept Math, Okara, Pakistan
[4] COMSATS Univ Islamabad, Dept Math, Lahore Campus, Lahore, Pakistan
[5] Govt Coll Univ, Dept Math, Lahore 54000, Pakistan
关键词
Convex stochastic processes; Hermite-Hadamard inequality; Ostrowski inequality; HERMITE-HADAMARD;
D O I
10.1186/s13660-022-02901-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present research, we introduce the notion of convex stochastic processes namely; strongly p-convex stochastic processes. We establish a generalized version of Ostrowski-type integral inequalities for strongly p-convex stochastic processes in the setting of a generalized k-fractional Hilfer-Katugampola derivative by using the Holder and power-mean inequalities. By using our main results, we derived some known results as special cases and many well-known existing results are also recaptured. It is assumed that this research will offer new guidelines in fractional calculus.
引用
收藏
页数:19
相关论文
共 37 条
  • [1] Fractional version of Ostrowski-type inequalities for strongly p-convex stochastic processes via a k-fractional Hilfer–Katugampola derivative
    Hengxiao Qi
    Muhammad Shoaib Saleem
    Imran Ahmed
    Sana Sajid
    Waqas Nazeer
    Journal of Inequalities and Applications, 2023
  • [2] Ostrowski-type inequalities for n-polynomial P-convex function for k-fractional Hilfer-Katugampola derivative
    Naz, Samaira
    Naeem, Muhammad Nawaz
    Chu, Yu-Ming
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01):
  • [3] Some k-fractional extension of Gruss-type inequalities via generalized Hilfer-Katugampola derivative
    Naz, Samaira
    Naeem, Muhammad Nawaz
    Chu, Yu-Ming
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [4] Fractional Ostrowski-type Inequalities via (α, β , γ, δ)-convex Function
    Hassan, Ali
    Khan, Asif R.
    Irshad, Nazia
    Khatoon, Sumbul
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2023, 20 (04): : 1 - 20
  • [5] k-fractional Ostrowski type inequalities via (s, r)-convex
    Hassan, Ali
    Khan, Asif R.
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2023, 50 (01): : 16 - 28
  • [6] k-FRACTIONAL OSTROWSKI TYPE INEQUALITIES VIA (s, r)-CONVEX
    Hassan, Ali
    Khan, Asif r.
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2025, 49 (04): : 527 - 540
  • [7] Some k-fractional extension of Grüss-type inequalities via generalized Hilfer–Katugampola derivative
    Samaira Naz
    Muhammad Nawaz Naeem
    Yu-Ming Chu
    Advances in Difference Equations, 2021
  • [8] Ostrowski-type fractional integral inequalities for mappings whose derivatives are h-convex via Katugampola fractional integrals
    Farid, Ghulam
    Katugampola, Udita N.
    Usman, Muhammad
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2018, 63 (04): : 465 - 474
  • [9] SOME k-FRACTIONAL INTEGRAL INEQUALITIES FOR p-CONVEX FUNCTIONS
    Mehreen, Naila
    Anwar, Matloob
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2024, 48 (01): : 25 - 39
  • [10] Some New Inequalities for p-Convex Functions via a K-Fractional Conformable Integral
    Dou, Yan
    Saleem, Muhammad Shoaib
    Anwar, Nimra
    Gao, Haiping
    JOURNAL OF MATHEMATICS, 2022, 2022