Investigating Activity Recognition for Hemiparetic Stroke Patients Using Wearable Sensors: A Deep Learning Approach with Data Augmentation

被引:4
|
作者
Oh, Youngmin [1 ]
Choi, Sol-A [2 ]
Shin, Yumi [2 ]
Jeong, Yeonwoo [2 ]
Lim, Jongkuk [3 ]
Kim, Sujin [2 ]
机构
[1] Gachon Univ, Sch Comp, Seongnam 13120, South Korea
[2] Jeonju Univ, Dept Phys Therapy, Jeonju 55069, South Korea
[3] Dankook Univ, Dept Comp Engn, Yongin 16890, South Korea
基金
新加坡国家研究基金会;
关键词
activities of daily living; classification; hemiparesis; human action recognition; range of motion; stroke rehabilitation; upper extremity; deep learning; UPPER-LIMB; ARM; MOVEMENT; THERAPY; PHASE;
D O I
10.3390/s24010210
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Measuring the daily use of an affected limb after hospital discharge is crucial for hemiparetic stroke rehabilitation. Classifying movements using non-intrusive wearable sensors provides context for arm use and is essential for the development of a home rehabilitation system. However, the movement classification of stroke patients poses unique challenges, including variability and sparsity. To address these challenges, we collected movement data from 15 hemiparetic stroke patients (Stroke group) and 29 non-disabled individuals (ND group). The participants performed two different tasks, the range of motion (14 movements) task and the activities of daily living (56 movements) task, wearing five inertial measurement units in a home setting. We trained a 1D convolutional neural network and evaluated its performance for different training groups: ND-only, Stroke-only, and ND and Stroke jointly. We further compared the model performance with data augmentation from axis rotation and investigated how the performance varied based on the asymmetry of movements. The joint training of ND + Stroke yielded an increased F1-score by a margin of 31.6% and 10.6% compared to ND-only training and Stroke-only training, respectively. Data augmentation further enhanced F1-scores across all conditions by an average of 11.3%. Finally, asymmetric movements decreased the F1-score by 25.9% compared to symmetric movements in the Stroke group, indicating the importance of asymmetry in movement classification.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Deep Learning for Laying Hen Activity Recognition Using Wearable Sensors
    Shahbazi, Mohammad
    Mohammadi, Kamyar
    Derakhshani, Sayed M.
    Koerkamp, Peter W. G. Groot
    AGRICULTURE-BASEL, 2023, 13 (03):
  • [2] Human Activity Recognition by Using Different Deep Learning Approaches for Wearable Sensors
    Erdas, Cagatay Berke
    Guney, Selda
    NEURAL PROCESSING LETTERS, 2021, 53 (03) : 1795 - 1809
  • [3] Multiscale Deep Feature Learning for Human Activity Recognition Using Wearable Sensors
    Tang, Yin
    Zhang, Lei
    Min, Fuhong
    He, Jun
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2023, 70 (02) : 2106 - 2116
  • [4] Human Activity Recognition by Using Different Deep Learning Approaches for Wearable Sensors
    Çağatay Berke Erdaş
    Selda Güney
    Neural Processing Letters, 2021, 53 : 1795 - 1809
  • [5] Deep-Learning-Based Human Activity Recognition Using Wearable Sensors
    Nouriani, A.
    McGovern, R. A.
    Rajamani, R.
    IFAC PAPERSONLINE, 2022, 55 (37): : 1 - 6
  • [6] Deep Human Activity Recognition Using Wearable Sensors
    Lawal, Isah A.
    Bano, Sophia
    12TH ACM INTERNATIONAL CONFERENCE ON PERVASIVE TECHNOLOGIES RELATED TO ASSISTIVE ENVIRONMENTS (PETRA 2019), 2019, : 45 - 48
  • [7] Wearable sensor data based human activity recognition using deep learning: A new approach
    Phuong Hanh Tran
    Quoc Thong Nguyen
    Kim Phuc Tran
    Heuchenne, Cedric
    DEVELOPMENTS OF ARTIFICIAL INTELLIGENCE TECHNOLOGIES IN COMPUTATION AND ROBOTICS, 2020, 12 : 581 - 588
  • [8] Deep ensemble learning approach for lower extremity activities recognition using wearable sensors
    Jain, Rahul
    Semwal, Vijay Bhaskar
    Kaushik, Praveen
    EXPERT SYSTEMS, 2022, 39 (06)
  • [9] Physical Activity Recognition Based on Deep Learning Using Photoplethysmography and Wearable Inertial Sensors
    Hnoohom, Narit
    Mekruksavanich, Sakorn
    Jitpattanakul, Anuchit
    ELECTRONICS, 2023, 12 (03)
  • [10] Human Activity Recognition With Smartphone and Wearable Sensors Using Deep Learning Techniques: A Review
    Ramanujam, E.
    Perumal, Thinagaran
    Padmavathi, S.
    IEEE SENSORS JOURNAL, 2021, 21 (12) : 13029 - 13040