Characterization of Cell Type Abundance and Gene Expression Timeline from Burned Skin Bulk Transcriptomics by Deconvolution

被引:1
|
作者
Fei, Xiaoyi [1 ,2 ,3 ]
Zhu, Min [2 ,3 ,4 ]
Li, Xueling [1 ,2 ,3 ,4 ]
机构
[1] Anhui Med Univ, Sch Biomed Engn, Hefei 230009, Anhui, Peoples R China
[2] Chinese Acad Sci, Inst Hlth & Med Technol, Hefei Inst Phys Sci, Anhui Prov Key Lab Med Phys & Technol, Hefei 230031, Anhui, Peoples R China
[3] Chinese Acad Sci, Hefei Canc Hosp, Oncol Translat Med Res Ctr, Hefei 230031, Anhui, Peoples R China
[4] TongLing Univ, Sch Math & Comp Sci, Tongling 244061, Anhui, Peoples R China
来源
JOURNAL OF BURN CARE & RESEARCH | 2024年 / 45卷 / 01期
基金
中国国家自然科学基金;
关键词
thermally injured skin; cell type signature matrix; group mode deconvolution; cell type-specific gene expression; timeline; WHITE ADIPOSE-TISSUE;
D O I
10.1093/jbcr/irad178
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
Currently, no timeline of cell heterogeneity in thermally injured skin has been reported. In this study, we proposed an approach to deconvoluting cell type abundance and expression from skin bulk transcriptomics with cell type signature matrix constructed by combining independent normal skin and peripheral blood scRNA-seq datasets. Using CIBERSORTx group mode deconvolution, we identified perturbed cell type fractions and cell type-specific gene expression in three stages postthermal injury. We found an increase in cell proportions and cell type-specific gene expression perturbation of neutrophils, macrophages, and endothelial cells and a decrease in CD4+ T cells, keratinocytes, melanocyte, and fibroblast cells, and cell type-specific gene expression perturbation postburn injury. Keratinocyte, fibroblast, and macrophage up regulated genes were dynamically enriched in overlapping and distinct Gene Ontology biological processes including acute phase response, leukocyte migration, metabolic, morphogenesis, and development process. Down-regulated genes were enriched in Wnt signaling, mesenchymal cell differentiation, gland and axon development, epidermal morphogenesis, and fatty acid and glucose metabolic process. We noticed an increase in the expression of CCL7, CCL2, CCL20, CCR1, CCR5, CCXL8, CXCL2, CXCL3, MMP1, MMP8, MMP3, IL24, IL6, IL1B, IL18R1, and TGFBR1 and a decrease in expression of CCL27, CCR10, CCR6, CCR8, CXCL9, IL37, IL17, IL7, IL11R, IL17R, TGFBR3, FGFR1-4, and IGFR1 in keratinocytes and/or fibroblasts. The inferred timeline of wound healing and CC and CXC genes in keratinocyte was validated on independent dataset GSE174661 of purified keratinocytes. The timeline of different cell types postburn may facilitate therapeutic timing.
引用
收藏
页码:205 / 215
页数:11
相关论文
共 50 条
  • [1] Computational deconvolution to estimate cell type-specific gene expression from bulk data
    Jaakkola, Maria K.
    Elo, Laura L.
    NAR GENOMICS AND BIOINFORMATICS, 2021, 3 (01) : 1DUMM
  • [2] Deconvolution of Bulk Gene Expression Profiles with Single-Cell Transcriptomics to Develop a Cell Type Composition-Based Prognostic Model for Acute Myeloid Leukemia
    Dai, Chengguqiu
    Chen, Mengya
    Wang, Chaolong
    Hao, Xingjie
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2021, 9
  • [3] Determining cell type abundance and expression from bulk tissues with digital cytometry
    Newman, Aaron M.
    Steen, Chloe B.
    Liu, Chih Long
    Gentles, Andrew J.
    Chaudhuri, Aadel A.
    Scherer, Florian
    Khodadoust, Michael S.
    Esfahani, Mohammad S.
    Luca, Bogdan A.
    Steiner, David
    Diehn, Maximilian
    Alizadeh, Ash A.
    NATURE BIOTECHNOLOGY, 2019, 37 (07) : 773 - +
  • [4] Determining cell type abundance and expression from bulk tissues with digital cytometry
    Aaron M. Newman
    Chloé B. Steen
    Chih Long Liu
    Andrew J. Gentles
    Aadel A. Chaudhuri
    Florian Scherer
    Michael S. Khodadoust
    Mohammad S. Esfahani
    Bogdan A. Luca
    David Steiner
    Maximilian Diehn
    Ash A. Alizadeh
    Nature Biotechnology, 2019, 37 : 773 - 782
  • [5] Deconvolution analysis of cell-type expression from bulk tissues by integrating with single-cell expression reference
    Luo, Yutong
    Fan, Ruzong
    GENETIC EPIDEMIOLOGY, 2022, 46 (08) : 615 - 628
  • [6] UnBlender: Untangling Respiratory Bulk Transcriptomics in the Lung and Nose Through Custom and Reliable Cell Type Deconvolution
    Gillett, T. E.
    Van den Berge, M.
    Koppelman, G. H.
    Nawijn, M. C.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2024, 209
  • [7] The Gene Expression Deconvolution Interactive Tool (GEDIT): accurate cell type quantification from gene expression data
    Nadel, Brian B.
    Lopez, David
    Montoya, Dennis J.
    Ma, Feiyang
    Waddel, Hannah
    Khan, Misha M.
    Mangul, Serghei
    Pellegrini, Matteo
    GIGASCIENCE, 2021, 10 (02):
  • [8] CDSeqR: fast complete deconvolution for gene expression data from bulk tissues
    Kai Kang
    Caizhi Huang
    Yuanyuan Li
    David M. Umbach
    Leping Li
    BMC Bioinformatics, 22
  • [9] CDSeqR: fast complete deconvolution for gene expression data from bulk tissues
    Kang, Kai
    Huang, Caizhi
    Li, Yuanyuan
    Umbach, David M.
    Li, Leping
    BMC BIOINFORMATICS, 2021, 22 (01)
  • [10] Celloscope: a probabilistic model for marker-gene-driven cell type deconvolution in spatial transcriptomics data
    Agnieszka Geras
    Shadi Darvish Shafighi
    Kacper Domżał
    Igor Filipiuk
    Alicja Rączkowska
    Paulina Szymczak
    Hosein Toosi
    Leszek Kaczmarek
    Łukasz Koperski
    Jens Lagergren
    Dominika Nowis
    Ewa Szczurek
    Genome Biology, 24