Defect detection and classification on imec iN5 node BEoL test vehicle with multibeam scanning electron microscope

被引:0
|
作者
Neumann, Jens Timo [1 ]
Srikantha, Abhilash [1 ]
Huethwohl, Philipp [1 ]
Lee, Keumsil [2 ]
William, B. James [1 ]
Korb, Thomas [1 ]
Foca, Eugen [1 ]
Garbowski, Tomasz [3 ]
Boecker, Daniel [3 ]
Das, Sayantan [4 ]
Halder, Sandip [4 ]
机构
[1] Carl Zeiss SMT GmbH, Oberkochen, Germany
[2] Carl Zeiss SMT Inc, Dublin, CA USA
[3] Carl Zeiss MultiSEM GmbH, Oberkochen, Germany
[4] imec, Leuven, Belgium
来源
JOURNAL OF MICRO-NANOPATTERNING MATERIALS AND METROLOGY-JM3 | 2023年 / 22卷 / 02期
关键词
multibeam scanning electron microscope; inspection; defect detection; defect classification; machine learning;
D O I
10.1117/1.JMM.22.2.021009
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present an automated application for defect detection and classification from ZEISS multibeam scanning electron microscope (MultiSEM (R)) images, based on machine learning (ML) technology. We acquire MultiSEM images of a semiconductor wafer suited for process window characterization at the imec iN5 logic node and use a dedicated application to train ML models for defect detection and classification. We show the user flow for training and execution, and the resulting capture and nuisance rates. Due to straightforward parallelization, the application is designed for the large amounts of data generated rapidly by the MultiSEM.
引用
收藏
页数:10
相关论文
共 5 条
  • [1] Defect detection and classification on imec iN5 node BEoL test vehicle with MultiSEM
    Neumann, Jens Timo
    Srikantha, Abhilash
    Huthwohl, Philipp
    Lee, Keumsil
    William, James B.
    Korb, Thomas
    Foca, Eugen
    Garbowski, Tomasz
    Boecker, Daniel
    Das, Sayantan
    Halder, Sandip
    METROLOGY, INSPECTION, AND PROCESS CONTROL XXXVI, 2022, 12053
  • [2] SCANNING ELECTRON MICROSCOPE AUTOMATIC DEFECT CLASSIFICATION OF PROCESS INDUCED DEFECTS
    Wolfe, Scott
    McGarvey, Steve
    METROLOGY, INSPECTION, AND PROCESS CONTROL FOR MICROLITHOGRAPHY XXXI, 2017, 10145
  • [3] Defect detection in patterned wafers using multichannel Scanning Electron Microscope
    Zontak, Maria
    Cohen, Israel
    SIGNAL PROCESSING, 2009, 89 (08) : 1511 - 1520
  • [4] A Review on Machine and Deep Learning for Semiconductor Defect Classification in Scanning Electron Microscope Images
    Lopez de la Rosa, Francisco
    Sanchez-Reolid, Roberto
    Gomez-Sirvent, Jose L.
    Morales, Rafael
    Fernandez-Caballero, Antonio
    APPLIED SCIENCES-BASEL, 2021, 11 (20):
  • [5] A deep residual neural network for semiconductor defect classification in imbalanced scanning electron microscope datasets
    Lopez de la Rosa, Francisco
    Gomez-Sirvent, Jose L.
    Morales, Rafael
    Sanchez-Reolid, Roberto
    Fernandez-Caballero, Antonio
    APPLIED SOFT COMPUTING, 2022, 131