Diophantine approximation with smooth numbers

被引:0
|
作者
Baker, Roger [1 ]
机构
[1] Brigham Young Univ, Dept Math, Provo, UT 84602 USA
来源
RAMANUJAN JOURNAL | 2023年 / 61卷 / 01期
关键词
Exponential sums; Smooth numbers; Distribution modulo one;
D O I
10.1007/s11139-020-00361-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let theta be an irrational number and phi a real number. Let C > 2 and epsilon > 0. There are infinitely many positive integers n free of prime factors > (log n)(C), such that parallel to theta n + phi parallel to < n(-(1/3 - 2/3C)+epsilon). Here parallel to y parallel to is the distance from y to Z.
引用
收藏
页码:49 / 54
页数:6
相关论文
共 50 条
  • [1] Diophantine approximation with smooth numbers
    Roger Baker
    The Ramanujan Journal, 2023, 61 : 49 - 54
  • [2] DIOPHANTINE APPROXIMATION OF COMPLEX NUMBERS
    SCHMIDT, AL
    ACTA MATHEMATICA, 1975, 134 (1-2) : 1 - 85
  • [3] DIOPHANTINE APPROXIMATION WITH GOLDBACH NUMBERS
    Harman, Glyn
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2020, 63 (02) : 151 - 163
  • [4] Diophantine approximation of Mahler numbers
    Bell, Jason P.
    Bugeaud, Yann
    Coons, Michael
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2015, 110 : 1157 - 1206
  • [5] On multidimensional Diophantine approximation of algebraic numbers
    Petho, Attila
    Pohst, Michael E.
    Bertok, Csanad
    JOURNAL OF NUMBER THEORY, 2017, 171 : 422 - 448
  • [6] DIOPHANTINE APPROXIMATION OF 2 REAL NUMBERS
    THURNHEER, P
    ACTA ARITHMETICA, 1984, 44 (03) : 201 - 206
  • [7] Diophantine approximation and parametric geometry of numbers
    Schmidt, Wolfgang M.
    Summerer, Leonhard
    MONATSHEFTE FUR MATHEMATIK, 2013, 169 (01): : 51 - 104
  • [8] SIMULTANEOUS DIOPHANTINE APPROXIMATION OF RATIONAL NUMBERS
    CUSICK, TW
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 17 (05): : 801 - &
  • [9] Diophantine approximation and parametric geometry of numbers
    Wolfgang M. Schmidt
    Leonhard Summerer
    Monatshefte für Mathematik, 2013, 169 : 51 - 104
  • [10] DIOPHANTINE APPROXIMATION BY PRIME-NUMBERS
    HARMAN, G
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1991, 44 : 218 - 226