Nitrogen-doped Ti3C2 MXene films with low -F terminal groups achieving an ultrahigh volumetric capacitance

被引:11
|
作者
Luo, Yangyang [1 ,2 ]
Jia, Shuting [1 ,2 ]
Yi, Yuanjie [1 ,2 ]
Liu, Xiong [1 ,2 ]
Zhang, Gaini [1 ,2 ]
Yang, Huijuan [1 ,2 ]
Li, Wenbin [1 ,2 ]
Wang, Jingjing [1 ,2 ]
Li, Xifei [1 ,2 ,3 ]
机构
[1] Xian Univ Technol, Inst Adv Electrochem Energy, Key Lab Adv Batteries Mat Elect Vehicles China Pe, Xian 710048, Peoples R China
[2] Xian Univ Technol, Sch Mat Sci & Engn, Xian 710048, Peoples R China
[3] Fuzhou Univ, Coll Mat Sci Engn, Fuzhou 350108, Fujian, Peoples R China
基金
中国博士后科学基金;
关键词
Supercapacitors; Nitrogen doping; Film electrode; Volumetric energy density; 2-DIMENSIONAL NANOMATERIALS; TITANIUM CARBIDE; ELECTRODE; GRAPHENE; MECHANISM;
D O I
10.1016/j.jallcom.2023.173355
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Two-dimensional Ti3C2 MXene with high bulk density can act as prospective electrode material to construct high volumetric energy density supercapacitors. Herein, a series of nitrogen-doped Ti3C2 (N-Ti3C2) films are successfully synthesized by adjusting the quantity of urea using a facile solvothermal method. The incorporation of nitrogen atoms can enlarge interlayer spacing and diminish -F terminal groups of Ti3C2 to promote the diffusion and intercalation of electrolyte ions, and bring about defect sites to provide more electrochemical reactive sites, thus improving the specific capacitance of N-Ti3C2. As a result, the 2.0 N-Ti3C2 film shows the highest volumetric capacitance of 2898.5 F cm-3 at scan rate of 2 mV s-1 in 3 M H2SO4 solution, which is mainly attributed to its high pyridinic N content and low -F terminal groups. Density functional theory (DFT) calculations indicate that the doped N atoms have a higher adsorption energy for protons to enhance the pseudocapacitance of 2.0 N-Ti3C2 electrode, and the increased density of states demonstrate the improvement of its electric conductivity after N doping, which promotes the rate performance of 2.0 N-Ti3C2 electrode. The assembled symmetric supercapacitor based on 2.0 N-Ti3C2 film delivers a high volumetric energy density of 40.8 Wh L-1 and good cycling stability. Our work provides an effective and alternative strategy to improve capacitance of other MXenes for highperformance supercapacitors.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Achieving ultrahigh gravimetric and volumetric supercapacitors with nitrogen-doped MXene nanomesh
    Zheng, Wei
    Yang, Li
    Yin, Xiaodan
    Feng, Hanchen
    Fan, Junjiang
    Zhang, Peigen
    Ying, Guobing
    Sun, Zhengming
    CHEMICAL ENGINEERING JOURNAL, 2024, 500
  • [2] Methanol and Diethanolamine Assisted Synthesis of Flexible Nitrogen-Doped Ti3C2 (MXene) Film for Ultrahigh Volumetric Performance Supercapacitor Electrodes
    Yang, Chenhui
    Tang, Yi
    Tian, Yapeng
    Luo, Yangyang
    Yin, Xingtian
    Que, Wenxiu
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (01) : 586 - 596
  • [3] Nitrogen-Doped Ti3C2 MXene: Mechanism Investigation and Electrochemical Analysis
    Lu, Chengjie
    Yang, Li
    Yan, Bingzhen
    Sun, Liangbo
    Zhang, Peigen
    Zhang, Wei
    Sun, ZhengMing
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (47)
  • [4] Nitrogen-Doped Porous MXene (Ti3C2) for Flexible Supercapacitors with Enhanced Storage Performance
    Tao, Xin
    Zhang, Linlin
    He, Xuedong
    Fang, Lingzi
    Wang, Hongyan
    Zhang, Li
    Yu, Lianghao
    Zhu, Guang
    MOLECULES, 2022, 27 (15):
  • [5] Boosting the volumetric capacitance of MoO3-x free-standing films with Ti3C2 MXene
    Zheng, Wei
    Halim, Joseph
    Etman, Ahmed S.
    El Ghazaly, Ahmed
    Rosen, Johanna
    Barsoum, Michel W.
    ELECTROCHIMICA ACTA, 2021, 370
  • [6] Nitrogen-doped Ti3C2 MXene-derived quantum dots for ultrasensitive detection of tetracycline in human serum
    Nguyen, Van Thanh
    Nguyen, Thi Ngoc Anh
    Doong, Ruey-an
    Liu, Keng-Ku
    MICROCHEMICAL JOURNAL, 2025, 208
  • [7] Rational design of porous nitrogen-doped Ti3C2 MXene as a multifunctional electrocatalyst for Li-S chemistry
    Song, Yingze
    Sun, Zhongti
    Fan, Zhaodi
    Cai, Wenlong
    Shao, Yuanlong
    Sheng, Guan
    Wang, Menglei
    Song, Lixian
    Liu, Zhongfan
    Zhang, Qiang
    Sun, Jingyu
    NANO ENERGY, 2020, 70
  • [8] Solvothermal synthesis of in situ nitrogen-doped Ti3C2 MXene fluorescent quantum dots for selective Cu2+ detection
    Feng, Yefeng
    Zhou, Furong
    Deng, Qihuang
    Peng, Cheng
    CERAMICS INTERNATIONAL, 2020, 46 (06) : 8320 - 8327
  • [9] Nanoporous Nitrogen-Doped Ti3C2 Nanosheets as Efficient Electrocatalysts for Oxygen Reduction
    Zhang, Jin
    Zhang, Xinyao
    Yue, Wenbo
    ACS APPLIED NANO MATERIALS, 2022, 5 (08) : 11241 - 11248
  • [10] Nitrogen-Doped Ti2C MXene Quantum Dots as Antioxidants
    Gou, Jingyun
    Zhao, Lin
    Li, Yan
    Zhang, Jinzhong
    ACS APPLIED NANO MATERIALS, 2021, 4 (11) : 12308 - 12315