ImFusion: Boosting Two-Stage 3D Object Detection via Image Candidates

被引:5
|
作者
Tao, Manli [1 ,2 ]
Zhao, Chaoyang [1 ,3 ]
Wang, Jinqiao [1 ,2 ,3 ]
Tang, Ming [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] ObjectEye Inc, Beijing 100000, Peoples R China
关键词
Three-dimensional displays; Proposals; Object detection; Feature extraction; Point cloud compression; Aggregates; Sun; 3D object detection; image candidates; pseudo 3D proposal; target missing; NETWORK;
D O I
10.1109/LSP.2023.3336569
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Multi-modal fusion methods combine the advantages of both point clouds and RGB images to boost the performance of 3D object detection. Despite the significant progress, we find that existing two-stage multi-modal fusion methods suffer from the 3D proposal missing in the first stage and projected-style feature fusion mechanism. To solve these problems, we propose a two-stage multi-modal feature fusion network, which improves the recall rate of hard targets in the first stage of network with pseudo 3D proposals generated from image candidates. Then, considering the complementary information between similar image foreground features across multiple objects, we design a multi-modal cross-target fusion module to pay more attention to the foreground objects. It enables a 3D proposal can aggregate the semantic features of multiple image candidates belonging to the same category. Finally, these enhanced fused proposals are processed in the second stage to further boost the performance of 3D detector. Experimental results on SUN RGB-D and KITTI datasets show the effectiveness of our proposed method.
引用
收藏
页码:241 / 245
页数:5
相关论文
共 50 条
  • [1] TSF: Two-Stage Sequential Fusion for 3D Object Detection
    Qi, Heng
    Shi, Peicheng
    Liu, Zhiqiang
    Yang, Aixi
    IEEE SENSORS JOURNAL, 2022, 22 (12) : 12163 - 12172
  • [2] TSFF: a two-stage fusion framework for 3D object detection
    Jiang, Guoqing
    Li, Saiya
    Huang, Ziyu
    Cai, Guorong
    Su, Jinhe
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [3] Fast Two-Stage 3D Object Detection with Semantic Guidance
    Huang Mang
    Hui Bin
    Liu Zhaoji
    Jin Tianming
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (12)
  • [4] TSFF: a two-stage fusion framework for 3D object detection
    Jiang, Guoqing
    Li, Saiya
    Huang, Ziyu
    Cai, Guorong
    Su, Jinhe
    PeerJ Computer Science, 2024, 10
  • [5] Two-stage 3D object detection guided by position encoding q
    Xu, Wanpeng
    Zou, Ling
    Fu, Zhipeng
    Wu, Lingda
    Qi, Yue
    NEUROCOMPUTING, 2022, 501 : 811 - 821
  • [6] ETS-3D: An Efficient Two-Stage Framework for Stereo 3D Object Detection
    Ji, Chaofeng
    Liu, Guizhong
    Zhao, Dan
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2022, 88
  • [7] Adapting Depth Distribution for 3D Object Detection with a Two-Stage Training Paradigm
    Luo, Yixin
    Huang, Zhangjin
    Bao, Zhongkui
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT XI, ICIC 2024, 2024, 14872 : 62 - 73
  • [8] FusionRCNN: LiDAR-Camera Fusion for Two-Stage 3D Object Detection
    Xu, Xinli
    Dong, Shaocong
    Xu, Tingfa
    Ding, Lihe
    Wang, Jie
    Jiang, Peng
    Song, Liqiang
    Li, Jianan
    REMOTE SENSING, 2023, 15 (07)
  • [9] Pulmonary Nodule Detection from 3D CT Image with a Two-Stage Network
    Liao, Miao
    Chi, Zhiwei
    Wu, Huizhu
    Di, Shuanhu
    Hu, Yonghua
    Li, Yunyi
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2023, 2023
  • [10] RangeLVDet: Boosting 3D Object Detection in LIDAR With Range Image and RGB Image
    Zhang, Zehan
    Liang, Zhidong
    Zhang, Ming
    Zhao, Xian
    Li, Hao
    Yang, Ming
    Tan, Wenming
    Pu, Shiliang
    IEEE SENSORS JOURNAL, 2022, 22 (02) : 1391 - 1403