Graphene/SiC composite porous electrodes for high-performance micro-supercapacitors

被引:3
|
作者
Zhang, Song [1 ,6 ]
Zhang, Ming [2 ]
Wang, Chongjie [2 ]
Lu, Pengjian [2 ,4 ]
Guo, Bingjian [2 ,5 ]
Li, Bao-Wen [2 ]
Tu, Rong [1 ,6 ]
Xu, Qingfang [1 ,3 ]
Wang, Chuanbin [1 ]
Zhang, Lianmeng [1 ,6 ]
机构
[1] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
[2] Wuhan Univ Technol, Sch Mat Sci & Engn, 122 Luoshi Rd, Wuhan 430070, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, 1037 Luoyu Rd, Wuhan, Peoples R China
[4] Wuhan Tuocai Technol Co Ltd, 147 Luoshi Rd, Wuhan 430070, Peoples R China
[5] Zhejiang MTCN Technol Co Ltd, 59, Luhui Rd, Taihu St, Huzhou 311103, Zhejiang, Peoples R China
[6] Chem & Chem Engn Guangdong Lab, Chaozhou Branch, Chaozhou 521000, Peoples R China
基金
中国国家自然科学基金;
关键词
Graphene; SiC composite; Porous films; Laser chemical vapor deposition; Specific surface area; Micro-supercapacitor; SILICON-CARBIDE NANOWIRES; ENERGY; STABILITY; GROWTH;
D O I
10.1016/j.jpowsour.2023.233463
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Micro-supercapacitor (MSC) electrodes prepared by chemical vapor deposition (CVD) possess high potential as on-chip integrated micro-power sources for future microdevices. In this study, porous graphene/SiC composite films are grown using laser CVD. A double-layer specific capacitance up to 219.3 mF/cm2 is achieved at 10 mV/s, which is 26 times higher than those of the electrodes prepared by CVD with the same energy storage mechanism reported in literatures. After 20000 charge-discharge cycles at room temperature (20 degrees C) and variable temperatures (0-60 degrees C), the electrode exhibits robust cycling stability with 99.9% and 109.6% capacitance retention, respectively. Subsequently, it is revealed that the abundance of graphene on the SiC porous skeleton plays a key role in promoting the capacitance enhancement. The strong structure of SiC as well as the strong adhesion between graphene and SiC guarantee the excellent cycling stability. Evidently, the preparation of graphene/SiC porous composite films as MSC electrodes is a highly promising route for fabricating high-performance and reliable on-chip power sources for future miniaturized devices.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Advanced Porous Gold-PANI Micro-Electrodes for High-Performance On-Chip Micro-Supercapacitors
    Naresh, Nibagani
    Zhu, Yijia
    Fan, Yujia
    Luo, Jingli
    Wang, Tianlei
    Parkin, Ivan P.
    Boruah, Buddha Deka
    NANO LETTERS, 2024, 24 (35) : 11059 - 11066
  • [2] Selective deposition of metal oxide nanoflakes on graphene electrodes to obtain high-performance asymmetric micro-supercapacitors
    Xia, Zhenyuan
    Mishukova, Viktoriia
    Sollami Delekta, Szymon
    Sun, Jinhua
    Sanchez, Jaime S.
    Li, Jiantong
    Palermo, Vincenzo
    NANOSCALE, 2021, 13 (05) : 3285 - 3294
  • [3] Enriched carbon dots/graphene microfibers towards high-performance micro-supercapacitors
    Li, Qing
    Cheng, Hengyang
    Wu, Xingjiang
    Wang, Cai-Feng
    Wu, Guan
    Chen, Su
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (29) : 14112 - 14119
  • [4] Laser direct writing of carbon/Au composite electrodes for high performance micro-supercapacitors
    Cai, Jinguang
    Watanabe, Akira
    Lv, Chao
    LASER-BASED MICRO- AND NANOPROCESSING XI, 2017, 10092
  • [5] High Power Graphene Micro-supercapacitors
    Kaner, R. B.
    Wang, C.
    El-Kady, M.
    Strauss, V
    Borenstein, A.
    Muni, M.
    Huang, H.
    Chang, X.
    Qu, S.
    Sung, K.
    2020 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2020,
  • [6] MXene ink printing of high-performance micro-supercapacitors
    Wang, Yitong
    Wang, Yuhua
    CARBON NEUTRALIZATION, 2024, 3 (05): : 798 - 817
  • [7] High-Performance Wearable Micro-Supercapacitors Based on Microfluidic-Directed Nitrogen-Doped Graphene Fiber Electrodes
    Wu, Guan
    Tan, Pengfeng
    Wu, Xingjiang
    Peng, Lu
    Cheng, Hengyang
    Wang, Cai-Feng
    Chen, Wei
    Yu, Ziyi
    Chen, Su
    ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (36)
  • [8] Quasi-aligned SiC@C nanowire arrays as free-standing electrodes for high-performance micro-supercapacitors
    Li, Xiaoxiao
    Liu, Qiao
    Chen, Shanliang
    Li, Weijun
    Liang, Zhao
    Fang, Zhi
    Yang, Weiyou
    Tian, Yun
    Yang, Ya
    ENERGY STORAGE MATERIALS, 2020, 27 : 261 - 269
  • [9] Sand-Milling Fabrication of Screen-Printable Graphene Composite Inks for High-Performance Planar Micro-Supercapacitors
    Chen, Huqiang
    Chen, Songbo
    Zhang, Yujin
    Ren, Hao
    Hu, Xinjun
    Bai, Yongxiao
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (50) : 56319 - 56329
  • [10] 3D printing of high-performance micro-supercapacitors with patterned exfoliated graphene/carbon nanotube/silver nanowire electrodes
    Lang Liu
    JunYong Lu
    XinLin Long
    Ren Zhou
    YingQuan Liu
    YiTing Wu
    KangWei Yan
    Science China Technological Sciences, 2021, 64 : 1065 - 1073