Automated Breast Tissue Classification through Machine Learning using Dielectric Data

被引:0
|
作者
Sanchez-Bayuela, Daniel Alvarez [1 ,2 ]
Canicatti, Eliana [3 ,4 ]
Badia, Mario [5 ]
Sani, Lorenzo [5 ]
Papini, Lorenzo [5 ]
Romero Castellano, Cristina [2 ]
Aguilar Angulo, Paul Martin [2 ]
Giovanetti Gonzalez, Ruben [2 ]
Cruz Hernandez, Lina Marcela [2 ]
Ruiz Martin, Juan [2 ]
Ghavami, Navid [5 ]
Tiberi, Gianluigi [5 ,6 ]
Monorchio, Agostino [4 ]
机构
[1] Univ Castilla La Mancha UCLM, Toledo, Spain
[2] Univ Hosp Toledo, Serv Salud Castilla La Mancha, Toledo, Spain
[3] Univ Pisa, Dept Informat Engn, Pisa, Italy
[4] Consorzio Natl Interuniv Telecomunicaz CNIT, Pisa, Italy
[5] UBT Umbria Bioengn Technol, Perugia, Italy
[6] London South Bank Univ, Sch Engn, London, England
关键词
dielectric properties; machine learning; open-ended coaxial probe; VTLM model; breast cancer;
D O I
10.23919/EuCAP57121.2023.10133114
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In recent years, new technologies focused on dielectric principles have been developed for medical applications. Conductivity and permittivity of biological tissues have been described to vary among benign and malignant tissues, so many efforts are being made to implement new systems based on safe low-power microwaves able to capture these inhomogeneities for medical imaging. However, such conductivity and permittivity parameters are being investigated for several different applications. The dielectric characterization of tissues in vivo during surgeries or via excised tissue may offer clinicians new tools for optimizing hospital routines in the diagnostic pathway. This work presents the application of several Machine Learning (ML) approaches to dielectric data gathered from excised breast tissues using a novel open-ended coaxial probe.
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Classification of Breast Cancer Data Using Machine Learning Algorithms
    Akbugday, Burak
    2019 MEDICAL TECHNOLOGIES CONGRESS (TIPTEKNO), 2019, : 429 - 432
  • [2] Machine learning techniques for classification of breast tissue
    Helwan, Abdulkader
    Idoko, John Bush
    Abiyev, Rahib H.
    9TH INTERNATIONAL CONFERENCE ON THEORY AND APPLICATION OF SOFT COMPUTING, COMPUTING WITH WORDS AND PERCEPTION, ICSCCW 2017, 2017, 120 : 402 - 410
  • [3] Automated classification of cervical neoplasms through colposcopic photography using machine learning
    Cho, B. J.
    Park, S. T.
    GYNECOLOGIC ONCOLOGY, 2020, 159 : 197 - 197
  • [4] Breast Tissue Classification Method Based on Machine Learning
    Li Y.
    Tang Z.
    Zhang L.
    Recent Patents on Engineering, 2024, 18 (01): : 18 - 27
  • [5] Automated brain histology classification using machine learning
    Ker, Justin
    Bai, Yeqi
    Lee, Hwei Yee
    Rao, Jai
    Wang, Lipo
    JOURNAL OF CLINICAL NEUROSCIENCE, 2019, 66 : 239 - 245
  • [6] Galaxy morphology classification using automated machine learning
    Reza, Moonzarin
    ASTRONOMY AND COMPUTING, 2021, 37
  • [7] Automated rebar diameter classification using point cloud data based machine learning
    Kim, Min-Koo
    Thedja, Julian Pratama Putra
    Chi, Hung-Lin
    Lee, Dong-Eun
    AUTOMATION IN CONSTRUCTION, 2021, 122
  • [8] Automated Machine Learning for the Classification of Normal and Abnormal Electromyography Data
    Kefalas, Marios
    Koch, Milan
    Geraedts, Victor
    Wang, Hao
    Tannemaat, Martijn
    Back, Thomas
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 1176 - 1185
  • [9] Automated Detection and Classification of Breast Cancer Tumour Cells using Machine Learning and Deep Learning on Histopathological Images
    Yadav, Anju
    Verma, Vivek K.
    Pal, Vipin
    Jain, Vanshika
    Garg, Vanshika
    2021 6TH INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2021,
  • [10] Seismic Data Classification using Machine Learning
    Li, Wenrui
    Nakshatra
    Narvekar, Nishita
    Raut, Nitisha
    Sirkeci, Birsen
    Gao, Jerry
    2018 IEEE FOURTH INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING SERVICE AND APPLICATIONS (IEEE BIGDATASERVICE 2018), 2018, : 56 - 63