Image-based crop disease detection with federated learning

被引:6
|
作者
Kabala, Denis Mamba [1 ]
Hafiane, Adel [1 ]
Bobelin, Laurent [2 ]
Canals, Raphael [3 ]
机构
[1] Univ Orleans, PRISME Lab EA 4229, INSA CVL, 88 Blvd Lahitolle, F-18000 Bourges, France
[2] Univ Orleans, LIFO Lab EA 4022, INSA CVL, 88 Blvd Lahitolle, F-18000 Bourges, France
[3] Univ Orleans, PRISME Lab EA 4229, INSA CVL, 12 Rue Blois, F-45067 Orleans, France
基金
欧盟地平线“2020”;
关键词
CLASSIFICATION; PRIVACY;
D O I
10.1038/s41598-023-46218-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Crop disease detection and management is critical to improving productivity, reducing costs, and promoting environmentally friendly crop treatment methods. Modern technologies, such as data mining and machine learning algorithms, have been used to develop automated crop disease detection systems. However, centralized approach to data collection and model training induces challenges in terms of data privacy, availability, and transfer costs. To address these challenges, federated learning appears to be a promising solution. In this paper, we explored the application of federated learning for crop disease classification using image analysis. We developed and studied convolutional neural network (CNN) models and those based on attention mechanisms, in this case vision transformers (ViT), using federated learning, leveraging an open access image dataset from the "PlantVillage" platform. Experiments conducted concluded that the performance of models trained by federated learning is influenced by the number of learners involved, the number of communication rounds, the number of local iterations and the quality of the data. With the objective of highlighting the potential of federated learning in crop disease classification, among the CNN models tested, ResNet50 performed better in several experiments than the other models, and proved to be an optimal choice, but also the most suitable for a federated learning scenario. The ViT_B16 and ViT_B32 Vision Transformers require more computational time, making them less suitable in a federated learning scenario, where computational time and communication costs are key parameters. The paper provides a state-of-the-art analysis, presents our methodology and experimental results, and concludes with ideas and future directions for our research on using federated learning in the context of crop disease classification.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Image-based crop disease detection with federated learning
    Denis Mamba Kabala
    Adel Hafiane
    Laurent Bobelin
    Raphaël Canals
    Scientific Reports, 13
  • [2] Image-based crop disease detection using machine learning
    Dolatabadian, Aria
    Neik, Ting Xiang
    Danilevicz, Monica F.
    Upadhyaya, Shriprabha R.
    Batley, Jacqueline
    Edwards, David
    PLANT PATHOLOGY, 2025, 74 (01) : 18 - 38
  • [3] Deep Learning for Image-Based Cassava Disease Detection
    Ramcharan, Amanda
    Baranowski, Kelsee
    McCloskey, Peter
    Ahmed, Babuali
    Legg, James
    Hughes, David P.
    FRONTIERS IN PLANT SCIENCE, 2017, 8
  • [4] Using Deep Learning for Image-Based Plant Disease Detection
    Mohanty, Sharada P.
    Hughes, David P.
    Salathe, Marcel
    FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [5] Using Deep Learning for Image-Based Potato Tuber Disease Detection
    Oppenheim, Dor
    Shani, Guy
    Erlich, Orly
    Tsror, Leah
    PHYTOPATHOLOGY, 2019, 109 (06) : 1083 - 1087
  • [6] Deep learning for image-based weed detection in turfgrass
    Yu, Jialin
    Sharpe, Shaun M.
    Schumann, Arnold W.
    Boyd, Nathan S.
    EUROPEAN JOURNAL OF AGRONOMY, 2019, 104 : 78 - 84
  • [7] Deep learning for image-based mobile malware detection
    Mercaldo, Francesco
    Santone, Antonella
    JOURNAL OF COMPUTER VIROLOGY AND HACKING TECHNIQUES, 2020, 16 (02) : 157 - 171
  • [8] Image-based ship detection using deep learning
    Lee, Sung-Jun
    Roh, Myung-Il
    Oh, Min-Jae
    OCEAN SYSTEMS ENGINEERING-AN INTERNATIONAL JOURNAL, 2020, 10 (04): : 415 - 434
  • [9] Transfer Learning for Image-Based Malware Detection for IoT
    Panda, Pratyush
    Om Kumar, C. U.
    Marappan, Suguna
    Ma, Suresh
    Manimurugan, S.
    Nandi, Deeksha Veesani
    SENSORS, 2023, 23 (06)
  • [10] Deep learning for image-based mobile malware detection
    Francesco Mercaldo
    Antonella Santone
    Journal of Computer Virology and Hacking Techniques, 2020, 16 : 157 - 171