SiamSampler: Video-Guided Sampling for Siamese Visual Tracking

被引:4
|
作者
Li, Peixia [1 ]
Chen, Boyu [1 ]
Bai, Lei [2 ]
Qiao, Lei [3 ]
Li, Bo [3 ]
Ouyang, Wanli [1 ,2 ]
机构
[1] Univ Sydney, Sch Elect & Informat Engn, Sydney, NSW 2008, Australia
[2] Shanghai AI Lab, Shanghai 200232, Peoples R China
[3] SenseTime Grp Ltd, Beijing 100080, Peoples R China
基金
澳大利亚研究理事会;
关键词
Training; Visualization; Training data; Object tracking; Indexes; Video on demand; Task analysis; Visual object tracking; Siamese network; sampling strategy; NETWORKS; ACCURATE; ROBUST;
D O I
10.1109/TCSVT.2022.3214480
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present SiamSampler, the first to our knowledge investigating video sampling in visual object tracking. We observe that the random sampling applied in Siamese-based trackers cannot focus on important data or ensure data diversity, hindering the effective training of networks. This paper proposes the Video-Guided Sampling Strategy to solve the problems in random sampling from both inter and intra-video levels. At the inter-video level, we propose Modified Gaussian Sampling Strategy (MGSS) to automatically assign higher sampling probabilities to longer and more difficult videos and reduce the sampling probabilities of shorter and easier videos. At the intra-video level, the Farthest Image Pair Sampling Strategy (FPSS) is proposed to increase the diversity of training data. Extensive experiments on general benchmarks demonstrate the effectiveness of our method. Compared with the baseline model, our method improves tracking performance on five datasets, without affecting the testing speed.
引用
收藏
页码:1752 / 1761
页数:10
相关论文
共 50 条
  • [1] Video-guided Camera Control for Target Tracking and Following
    Gemerek, Jake
    Ferrari, Silvia
    Wang, Brian H.
    Campbell, Mark E.
    IFAC PAPERSONLINE, 2019, 51 (34): : 176 - 183
  • [2] Live Video-Guided Volumetric Tracking of Respiration Motion
    Li, S.
    Hartl, B.
    Serratore, D.
    Neicu, T.
    Chan, P.
    Valakh, V.
    Bizhan, M.
    Miyamoto, C.
    Geng, J.
    MEDICAL PHYSICS, 2012, 39 (06) : 3618 - 3618
  • [3] FLOW GUIDED SIAMESE NETWORK FOR VISUAL TRACKING
    Wang, Guokun
    Liu, Bin
    Li, Weihai
    Yu, Nenghai
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 231 - 235
  • [4] Siamese Guided Anchoring Network for Visual Tracking
    Zhou, Yifei
    Li, Jing
    Chang, Jun
    Xiao, Yafu
    Wan, Jun
    Sun, Hang
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [5] Motion Guided Siamese Trackers for Visual Tracking
    Wu, Chenglong
    Zhang, Yue
    Zhang, Yi
    Zhang, Wenkai
    Wang, Hongqi
    Zhang, Yunyan
    Sun, Xian
    IEEE ACCESS, 2020, 8 : 7473 - 7489
  • [6] VIDEO-GUIDED CHIVA TREATMENT
    WEISS, RA
    DERMATOLOGIC SURGERY, 1995, 21 (07) : 626 - 626
  • [7] Video-guided surgery in lung cancer
    Giudicelli, R
    Thomas, P
    Doddoli, C
    Pietri, P
    Fuentes, P
    REVUE DES MALADIES RESPIRATOIRES, 1999, 16 : S176 - S176
  • [8] Video-Guided Sound Source Separation
    Zhou, Junfeng
    Wang, Feng
    Guo, Di
    Liu, Huaping
    Sun, Fuchun
    INTELLIGENT ROBOTICS AND APPLICATIONS, ICIRA 2019, PT I, 2019, 11740 : 415 - 426
  • [9] Robust visual tracking algorithm with coattention guided Siamese network
    Dai, Jiahai
    Jiang, Jiaqi
    Wang, Songxin
    Chang, Yuchun
    JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (03)
  • [10] SiamAGN: Siamese attention-guided network for visual tracking
    Wei, Bingbing
    Chen, Hongyu
    Ding, Qinghai
    Luo, Haibo
    NEUROCOMPUTING, 2022, 512 : 69 - 82