Towards the personalization of gelatin-based 3D patches: a tunable porous carrier for topical applications

被引:1
|
作者
Ribeiro, Ricardo [1 ]
Bom, Sara [1 ]
Martins, Ana M. [1 ]
Ribeiro, Helena M. [1 ]
Santos, Catarina [1 ,2 ,3 ]
Marto, Joana [1 ]
机构
[1] Univ Lisbon, Res Inst Med iMed ULisboa, Fac Pharm, P-1649003 Lisbon, Portugal
[2] Univ Lisbon, CQE, Inst Super Tecn, Ave Rovisco Pais, P-1049001 Lisbon, Portugal
[3] Inst Politecn Setubal, EST Setubal, CDP2T, Setubal, Portugal
关键词
3D (bio)printing; Hydrogel; Personalized therapies; Topical delivery systems; DRUG-DELIVERY; DISSOLUTION; RELEASE;
D O I
10.1007/s13346-023-01294-y
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Cell-free based therapies, for example, the use of the cell secretome, have emerged as a promising alternative to conventional skin therapies using bioactive and, when combined with 3D printing technologies, allow the development of personalized dosage forms. This research work aimed to develop gelatin-based patches with controlled network topology via extrusion 3D printing, loaded with cell culture medium as a model of the secretome, and applicable as vehicles for topical delivery. Inks were optimized through rheological and printing assays, and the incorporation of medium had minor effects in printability. Regarding network topology, grid infills rendered more defined structures than the triangular layout, depicting clearer pores and pore area consistency. Release studies showed that filament spacing and infill pattern influenced the release of rhodamine B (model bioactive) and bovine serum albumin (model protein). Moreover, the grid patches (G-0.7/1/0.7), despite having around a seven-fold higher mean pore area than 0.7-mm triangular ones (T-0.7), showed a similar release profile, which can be linked to the network topology of the printed structures This work provided insight on employing (bio)printing in the production of carriers with reproducible and controlled pore area, able to incorporate cell-derived secretome and to be quickly tailored to the patient's lesions.
引用
收藏
页码:1799 / 1812
页数:14
相关论文
共 50 条
  • [1] Towards the personalization of gelatin-based 3D patches: a tunable porous carrier for topical applications
    Ricardo Ribeiro
    Sara Bom
    Ana M. Martins
    Helena M. Ribeiro
    Catarina Santos
    Joana Marto
    Drug Delivery and Translational Research, 2023, 13 : 1799 - 1812
  • [2] Gelatin-Based Hydrogels for Organ 3D Bioprinting
    Wang, Xiaohong
    Ao, Qiang
    Tian, Xiaohong
    Fan, Jun
    Tong, Hao
    Hou, Weijian
    Bai, Shuling
    POLYMERS, 2017, 9 (09)
  • [3] Gelatin-Based Matrices as a Tunable Platform To Study in Vitro and in Vivo 3D Cell Invasion
    Peter, Mathew
    Singh, Archana
    Mohankumar, Kumaravel
    Jeenger, Rajeev
    Joge, Puja Arun
    Gatne, Madhumanjiri Mukulesh
    Tayalia, Prakriti
    ACS APPLIED BIO MATERIALS, 2019, 2 (02) : 916 - 929
  • [4] Progress of gelatin-based 3D approaches for bone regeneration
    Echave, M. C.
    Sanchez, P.
    Pedraz, J. L.
    Orive, G.
    JOURNAL OF DRUG DELIVERY SCIENCE AND TECHNOLOGY, 2017, 42 : 63 - 74
  • [5] 3D printed alginate/gelatin-based porous hydrogel scaffolds to improve diabetic wound healing
    Lin, Zhaoyi
    Xie, Weike
    Cui, Zhenhua
    Huang, Jiana
    Cao, Hao
    Li, Yan
    GIANT, 2023, 16
  • [6] Evaluation of Gelatin-Based Cell Substrates and 3D Microstructuring by Multiphoton Polymerization
    Hoch, Eva
    TISSUE ENGINEERING PART A, 2011, 17 (3-4) : 570 - 570
  • [7] Ionically crosslinked biohybrid gelatin-based hydrogels for 3D cell culture
    Du, Eric Y.
    Duong, H. T. Kim
    Tolentino, M. A. Kristine
    Houng, Jacinta L.
    Suwannakot, Panthipa
    Tjandra, Kristel C.
    Nguyen, Duyen H. T.
    Tilley, Richard D.
    Gooding, J. Justin
    MACROMOLECULAR RESEARCH, 2025,
  • [8] Gelatin-Based 3D Microgels for In Vitro T Lineage Cell Generation
    Suraiya, Anisha B.
    Hun, Michael L.
    Truong, Vinh X.
    Forsythe, John S.
    Chidgey, Ann P.
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2020, 6 (04) : 2198 - 2208
  • [9] Microcylinder-laden gelatin-based bioink engineered for 3D bioprinting
    Lee, Joshua
    Park, Chan Hee
    Kim, Cheol Sang
    MATERIALS LETTERS, 2018, 233 : 24 - 27
  • [10] The Development of Gelatin-Based Bio-Ink for Use in 3D Hybrid Bioprinting
    Shin, Jung Hwal
    Kang, Hyun-Wook
    INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING, 2018, 19 (05) : 767 - 771